Limits...
Effects of direct social experience on trust decisions and neural reward circuitry.

Fareri DS, Chang LJ, Delgado MR - Front Neurosci (2012)

Bottom Line: Participants' trust decisions were influenced by their prior experience in the ball-tossing game, investing less often with the bad partner compared to the good and neutral.Reinforcement learning models revealed that participants were more sensitive to updating their beliefs about good and bad partners when experiencing outcomes consistent with initial experience.These results suggest that initial impressions formed from direct social experience can be continually shaped by consistent information through reward learning mechanisms.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, Rutgers University Newark, NJ, USA.

ABSTRACT
The human striatum is integral for reward-processing and supports learning by linking experienced outcomes with prior expectations. Recent endeavors implicate the striatum in processing outcomes of social interactions, such as social approval/rejection, as well as in learning reputations of others. Interestingly, social impressions often influence our behavior with others during interactions. Information about an interaction partner's moral character acquired from biographical information hinders updating of expectations after interactions via top down modulation of reward circuitry. An outstanding question is whether initial impressions formed through experience similarly modulate the ability to update social impressions at the behavioral and neural level. We investigated the role of experienced social information on trust behavior and reward-related BOLD activity. Participants played a computerized ball-tossing game with three fictional partners manipulated to be perceived as good, bad, or neutral. Participants then played an iterated trust game as investors with these same partners while undergoing fMRI. Unbeknownst to participants, partner behavior in the trust game was random and unrelated to their ball-tossing behavior. Participants' trust decisions were influenced by their prior experience in the ball-tossing game, investing less often with the bad partner compared to the good and neutral. Reinforcement learning models revealed that participants were more sensitive to updating their beliefs about good and bad partners when experiencing outcomes consistent with initial experience. Increased striatal and anterior cingulate BOLD activity for positive versus negative trust game outcomes emerged, which further correlated with model-derived prediction error learning signals. These results suggest that initial impressions formed from direct social experience can be continually shaped by consistent information through reward learning mechanisms.

No MeSH data available.


Prediction error BOLD responses. Model-derived trial-to-trial prediction error (PE) values were entered into a random effects General Linear Model in BrainVoyager as a parametric regressor. BOLD responses correlating with the PE regressor are observed in corticostriatal circuitry, including ventral striatum (x, y, z = 5, 13, −3) and ventral anterior cingulate cortex (x, y, z = 8, 31, −9).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3472892&req=5

Figure 4: Prediction error BOLD responses. Model-derived trial-to-trial prediction error (PE) values were entered into a random effects General Linear Model in BrainVoyager as a parametric regressor. BOLD responses correlating with the PE regressor are observed in corticostriatal circuitry, including ventral striatum (x, y, z = 5, 13, −3) and ventral anterior cingulate cortex (x, y, z = 8, 31, −9).

Mentions: We sought to characterize whether BOLD activity in putative reward circuitry was reflecting PE signals that were being used to update behavior at a trial-to-trial level. Using the PE values generated from the LG models described above as a parametric regressor, we note significant clusters of activation in Table 4. Of particular interest were clusters in right and ventral striatum extending slightly into sgACC (x, y, z = 5, 13, −3; see Figure 4), left ventral putamen (x, y, z = −16, 1, −6), and ventral ACC (BA32: x, y, z = 8, 31, −9). To ensure that this effect was not driven by lottery trials, we conducted an additional analysis in which only PE values for the social conditions were included (see Table 5).


Effects of direct social experience on trust decisions and neural reward circuitry.

Fareri DS, Chang LJ, Delgado MR - Front Neurosci (2012)

Prediction error BOLD responses. Model-derived trial-to-trial prediction error (PE) values were entered into a random effects General Linear Model in BrainVoyager as a parametric regressor. BOLD responses correlating with the PE regressor are observed in corticostriatal circuitry, including ventral striatum (x, y, z = 5, 13, −3) and ventral anterior cingulate cortex (x, y, z = 8, 31, −9).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3472892&req=5

Figure 4: Prediction error BOLD responses. Model-derived trial-to-trial prediction error (PE) values were entered into a random effects General Linear Model in BrainVoyager as a parametric regressor. BOLD responses correlating with the PE regressor are observed in corticostriatal circuitry, including ventral striatum (x, y, z = 5, 13, −3) and ventral anterior cingulate cortex (x, y, z = 8, 31, −9).
Mentions: We sought to characterize whether BOLD activity in putative reward circuitry was reflecting PE signals that were being used to update behavior at a trial-to-trial level. Using the PE values generated from the LG models described above as a parametric regressor, we note significant clusters of activation in Table 4. Of particular interest were clusters in right and ventral striatum extending slightly into sgACC (x, y, z = 5, 13, −3; see Figure 4), left ventral putamen (x, y, z = −16, 1, −6), and ventral ACC (BA32: x, y, z = 8, 31, −9). To ensure that this effect was not driven by lottery trials, we conducted an additional analysis in which only PE values for the social conditions were included (see Table 5).

Bottom Line: Participants' trust decisions were influenced by their prior experience in the ball-tossing game, investing less often with the bad partner compared to the good and neutral.Reinforcement learning models revealed that participants were more sensitive to updating their beliefs about good and bad partners when experiencing outcomes consistent with initial experience.These results suggest that initial impressions formed from direct social experience can be continually shaped by consistent information through reward learning mechanisms.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, Rutgers University Newark, NJ, USA.

ABSTRACT
The human striatum is integral for reward-processing and supports learning by linking experienced outcomes with prior expectations. Recent endeavors implicate the striatum in processing outcomes of social interactions, such as social approval/rejection, as well as in learning reputations of others. Interestingly, social impressions often influence our behavior with others during interactions. Information about an interaction partner's moral character acquired from biographical information hinders updating of expectations after interactions via top down modulation of reward circuitry. An outstanding question is whether initial impressions formed through experience similarly modulate the ability to update social impressions at the behavioral and neural level. We investigated the role of experienced social information on trust behavior and reward-related BOLD activity. Participants played a computerized ball-tossing game with three fictional partners manipulated to be perceived as good, bad, or neutral. Participants then played an iterated trust game as investors with these same partners while undergoing fMRI. Unbeknownst to participants, partner behavior in the trust game was random and unrelated to their ball-tossing behavior. Participants' trust decisions were influenced by their prior experience in the ball-tossing game, investing less often with the bad partner compared to the good and neutral. Reinforcement learning models revealed that participants were more sensitive to updating their beliefs about good and bad partners when experiencing outcomes consistent with initial experience. Increased striatal and anterior cingulate BOLD activity for positive versus negative trust game outcomes emerged, which further correlated with model-derived prediction error learning signals. These results suggest that initial impressions formed from direct social experience can be continually shaped by consistent information through reward learning mechanisms.

No MeSH data available.