Limits...
Complete scene recovery and terrain classification in textured terrain meshes.

Song W, Cho K, Um K, Won CS, Sim S - Sensors (Basel) (2012)

Bottom Line: Terrain classification allows a mobile robot to create an annotated map of its local environment from the three-dimensional (3D) and two-dimensional (2D) datasets collected by its array of sensors, including a GPS receiver, gyroscope, video camera, and range sensor.However, parts of objects that are outside the measurement range of the range sensor will not be detected.Here, the Gibbs-Markov random field is used to segment the ground from 2D videos and 3D point clouds.

View Article: PubMed Central - PubMed

Affiliation: Department of Multimedia Engineering, Dongguk University-Seoul, 26 Pildosng 3 Ga, Jung-gu, Seoul 100-715, Korea. songwei@dongguk.edu

ABSTRACT
Terrain classification allows a mobile robot to create an annotated map of its local environment from the three-dimensional (3D) and two-dimensional (2D) datasets collected by its array of sensors, including a GPS receiver, gyroscope, video camera, and range sensor. However, parts of objects that are outside the measurement range of the range sensor will not be detected. To overcome this problem, this paper describes an edge estimation method for complete scene recovery and complete terrain reconstruction. Here, the Gibbs-Markov random field is used to segment the ground from 2D videos and 3D point clouds. Further, a masking method is proposed to classify buildings and trees in a terrain mesh.

No MeSH data available.


Terrain reconstruction results.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3472881&req=5

f5-sensors-12-11221: Terrain reconstruction results.

Mentions: When mobile robots detect surrounding terrain information, some parts of objects are outside the measurement of range sensors. We see that the top of the building is missing in the terrain reconstruction result, shown as Figure 5.


Complete scene recovery and terrain classification in textured terrain meshes.

Song W, Cho K, Um K, Won CS, Sim S - Sensors (Basel) (2012)

Terrain reconstruction results.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3472881&req=5

f5-sensors-12-11221: Terrain reconstruction results.
Mentions: When mobile robots detect surrounding terrain information, some parts of objects are outside the measurement of range sensors. We see that the top of the building is missing in the terrain reconstruction result, shown as Figure 5.

Bottom Line: Terrain classification allows a mobile robot to create an annotated map of its local environment from the three-dimensional (3D) and two-dimensional (2D) datasets collected by its array of sensors, including a GPS receiver, gyroscope, video camera, and range sensor.However, parts of objects that are outside the measurement range of the range sensor will not be detected.Here, the Gibbs-Markov random field is used to segment the ground from 2D videos and 3D point clouds.

View Article: PubMed Central - PubMed

Affiliation: Department of Multimedia Engineering, Dongguk University-Seoul, 26 Pildosng 3 Ga, Jung-gu, Seoul 100-715, Korea. songwei@dongguk.edu

ABSTRACT
Terrain classification allows a mobile robot to create an annotated map of its local environment from the three-dimensional (3D) and two-dimensional (2D) datasets collected by its array of sensors, including a GPS receiver, gyroscope, video camera, and range sensor. However, parts of objects that are outside the measurement range of the range sensor will not be detected. To overcome this problem, this paper describes an edge estimation method for complete scene recovery and complete terrain reconstruction. Here, the Gibbs-Markov random field is used to segment the ground from 2D videos and 3D point clouds. Further, a masking method is proposed to classify buildings and trees in a terrain mesh.

No MeSH data available.