Limits...
Complete scene recovery and terrain classification in textured terrain meshes.

Song W, Cho K, Um K, Won CS, Sim S - Sensors (Basel) (2012)

Bottom Line: Terrain classification allows a mobile robot to create an annotated map of its local environment from the three-dimensional (3D) and two-dimensional (2D) datasets collected by its array of sensors, including a GPS receiver, gyroscope, video camera, and range sensor.However, parts of objects that are outside the measurement range of the range sensor will not be detected.Here, the Gibbs-Markov random field is used to segment the ground from 2D videos and 3D point clouds.

View Article: PubMed Central - PubMed

Affiliation: Department of Multimedia Engineering, Dongguk University-Seoul, 26 Pildosng 3 Ga, Jung-gu, Seoul 100-715, Korea. songwei@dongguk.edu

ABSTRACT
Terrain classification allows a mobile robot to create an annotated map of its local environment from the three-dimensional (3D) and two-dimensional (2D) datasets collected by its array of sensors, including a GPS receiver, gyroscope, video camera, and range sensor. However, parts of objects that are outside the measurement range of the range sensor will not be detected. To overcome this problem, this paper describes an edge estimation method for complete scene recovery and complete terrain reconstruction. Here, the Gibbs-Markov random field is used to segment the ground from 2D videos and 3D point clouds. Further, a masking method is proposed to classify buildings and trees in a terrain mesh.

No MeSH data available.


Errors in ground classification.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3472881&req=5

f13-sensors-12-11221: Errors in ground classification.

Mentions: We define two types of classification errors in this project. One of them results from undetected ground pixels. If ground pixels are inferred as non-ground pixels, we define them as inferred errors. Figure 13 shows samples of undetected ground pixel ratio and inferred error ratio.


Complete scene recovery and terrain classification in textured terrain meshes.

Song W, Cho K, Um K, Won CS, Sim S - Sensors (Basel) (2012)

Errors in ground classification.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3472881&req=5

f13-sensors-12-11221: Errors in ground classification.
Mentions: We define two types of classification errors in this project. One of them results from undetected ground pixels. If ground pixels are inferred as non-ground pixels, we define them as inferred errors. Figure 13 shows samples of undetected ground pixel ratio and inferred error ratio.

Bottom Line: Terrain classification allows a mobile robot to create an annotated map of its local environment from the three-dimensional (3D) and two-dimensional (2D) datasets collected by its array of sensors, including a GPS receiver, gyroscope, video camera, and range sensor.However, parts of objects that are outside the measurement range of the range sensor will not be detected.Here, the Gibbs-Markov random field is used to segment the ground from 2D videos and 3D point clouds.

View Article: PubMed Central - PubMed

Affiliation: Department of Multimedia Engineering, Dongguk University-Seoul, 26 Pildosng 3 Ga, Jung-gu, Seoul 100-715, Korea. songwei@dongguk.edu

ABSTRACT
Terrain classification allows a mobile robot to create an annotated map of its local environment from the three-dimensional (3D) and two-dimensional (2D) datasets collected by its array of sensors, including a GPS receiver, gyroscope, video camera, and range sensor. However, parts of objects that are outside the measurement range of the range sensor will not be detected. To overcome this problem, this paper describes an edge estimation method for complete scene recovery and complete terrain reconstruction. Here, the Gibbs-Markov random field is used to segment the ground from 2D videos and 3D point clouds. Further, a masking method is proposed to classify buildings and trees in a terrain mesh.

No MeSH data available.