Limits...
A survey on clustering routing protocols in wireless sensor networks.

Liu X - Sensors (Basel) (2012)

Bottom Line: Owing to a variety of advantages, clustering is becoming an active branch of routing technology in WSNs.In particular, we systematically analyze a few prominent WSN clustering routing protocols and compare these different approaches according to our taxonomy and several significant metrics.Finally, we summarize and conclude the paper with some future directions.

View Article: PubMed Central - PubMed

Affiliation: School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510641, China. liuxuxun@scut.edu.cn

ABSTRACT
The past few years have witnessed increased interest in the potential use of wireless sensor networks (WSNs) in a wide range of applications and it has become a hot research area. Based on network structure, routing protocols in WSNs can be divided into two categories: flat routing and hierarchical or clustering routing. Owing to a variety of advantages, clustering is becoming an active branch of routing technology in WSNs. In this paper, we present a comprehensive and fine grained survey on clustering routing protocols proposed in the literature for WSNs. We outline the advantages and objectives of clustering for WSNs, and develop a novel taxonomy of WSN clustering routing methods based on complete and detailed clustering attributes. In particular, we systematically analyze a few prominent WSN clustering routing protocols and compare these different approaches according to our taxonomy and several significant metrics. Finally, we summarize and conclude the paper with some future directions.

Show MeSH
The Token Passing Scheme in PEGASIS.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3472877&req=5

f8-sensors-12-11113: The Token Passing Scheme in PEGASIS.

Mentions: For gathering data from sensor nodes in each round, each node receives data from one neighbor, fuses the data with its own, and transmits to the other neighbor on the chain. By moving from node to node, the fused data eventually are sent to the sink by the leader at a random position on the chain. The leader is important for nodes to die at random locations, in respect that the idea of nodes dying at random places is to enhance the robustness of the network. Alternatively, in each round, a control token passing approach initiated by the leader is used to start the data transmission from the ends of the chain. The scheme of data transmission in PEGASIS is shown in Figure 8. In this figure, if node C2 is the leader, it will pass the token along the chain to node C0 at first. Then, node C0 will pass its data toward node C2. After node C2 receives data from node C1, it will pass the token to node C4, and node C4 will pass its data towards node C2 with data fusion taking place along the chain.


A survey on clustering routing protocols in wireless sensor networks.

Liu X - Sensors (Basel) (2012)

The Token Passing Scheme in PEGASIS.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3472877&req=5

f8-sensors-12-11113: The Token Passing Scheme in PEGASIS.
Mentions: For gathering data from sensor nodes in each round, each node receives data from one neighbor, fuses the data with its own, and transmits to the other neighbor on the chain. By moving from node to node, the fused data eventually are sent to the sink by the leader at a random position on the chain. The leader is important for nodes to die at random locations, in respect that the idea of nodes dying at random places is to enhance the robustness of the network. Alternatively, in each round, a control token passing approach initiated by the leader is used to start the data transmission from the ends of the chain. The scheme of data transmission in PEGASIS is shown in Figure 8. In this figure, if node C2 is the leader, it will pass the token along the chain to node C0 at first. Then, node C0 will pass its data toward node C2. After node C2 receives data from node C1, it will pass the token to node C4, and node C4 will pass its data towards node C2 with data fusion taking place along the chain.

Bottom Line: Owing to a variety of advantages, clustering is becoming an active branch of routing technology in WSNs.In particular, we systematically analyze a few prominent WSN clustering routing protocols and compare these different approaches according to our taxonomy and several significant metrics.Finally, we summarize and conclude the paper with some future directions.

View Article: PubMed Central - PubMed

Affiliation: School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510641, China. liuxuxun@scut.edu.cn

ABSTRACT
The past few years have witnessed increased interest in the potential use of wireless sensor networks (WSNs) in a wide range of applications and it has become a hot research area. Based on network structure, routing protocols in WSNs can be divided into two categories: flat routing and hierarchical or clustering routing. Owing to a variety of advantages, clustering is becoming an active branch of routing technology in WSNs. In this paper, we present a comprehensive and fine grained survey on clustering routing protocols proposed in the literature for WSNs. We outline the advantages and objectives of clustering for WSNs, and develop a novel taxonomy of WSN clustering routing methods based on complete and detailed clustering attributes. In particular, we systematically analyze a few prominent WSN clustering routing protocols and compare these different approaches according to our taxonomy and several significant metrics. Finally, we summarize and conclude the paper with some future directions.

Show MeSH