Limits...
A survey on clustering routing protocols in wireless sensor networks.

Liu X - Sensors (Basel) (2012)

Bottom Line: Owing to a variety of advantages, clustering is becoming an active branch of routing technology in WSNs.In particular, we systematically analyze a few prominent WSN clustering routing protocols and compare these different approaches according to our taxonomy and several significant metrics.Finally, we summarize and conclude the paper with some future directions.

View Article: PubMed Central - PubMed

Affiliation: School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510641, China. liuxuxun@scut.edu.cn

ABSTRACT
The past few years have witnessed increased interest in the potential use of wireless sensor networks (WSNs) in a wide range of applications and it has become a hot research area. Based on network structure, routing protocols in WSNs can be divided into two categories: flat routing and hierarchical or clustering routing. Owing to a variety of advantages, clustering is becoming an active branch of routing technology in WSNs. In this paper, we present a comprehensive and fine grained survey on clustering routing protocols proposed in the literature for WSNs. We outline the advantages and objectives of clustering for WSNs, and develop a novel taxonomy of WSN clustering routing methods based on complete and detailed clustering attributes. In particular, we systematically analyze a few prominent WSN clustering routing protocols and compare these different approaches according to our taxonomy and several significant metrics. Finally, we summarize and conclude the paper with some future directions.

Show MeSH
Pie Shaped Clusters Arranged in Two Layers in UCS.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3472877&req=5

f6-sensors-12-11113: Pie Shaped Clusters Arranged in Two Layers in UCS.

Mentions: In UCS, the sensing field is assumed to be circular and is divided into two concentric circles, called layers. In order to simplify the theoretical analysis, the authors approximate the sensing field as pie shaped field with a multiple-layer network, shown in Figure 6. It is assumed that all clusters in one layer have the same size and shape, but the sizes and shapes of clusters in the two layers are different. The position of a CH within the cluster boundaries determines the overall energy consumption of nodes that belong to the cluster. To keep the total energy dissipation within the cluster as small as possible, every CH should be positioned at the center of the cluster. CHs are deterministically deployed in the network and are assumed to be super nodes which are much more expensive than MNs. By varying the radius of the first layer around the BS, while assuming a constant number of clusters in every layer, the area covered by clusters in each layer can be changed, and accordingly the number of nodes contained in a particular cluster can be changed. Data transmission is done through multiple hops, where every CH chooses to forward its data to the closest CH in the direction of the BS.


A survey on clustering routing protocols in wireless sensor networks.

Liu X - Sensors (Basel) (2012)

Pie Shaped Clusters Arranged in Two Layers in UCS.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3472877&req=5

f6-sensors-12-11113: Pie Shaped Clusters Arranged in Two Layers in UCS.
Mentions: In UCS, the sensing field is assumed to be circular and is divided into two concentric circles, called layers. In order to simplify the theoretical analysis, the authors approximate the sensing field as pie shaped field with a multiple-layer network, shown in Figure 6. It is assumed that all clusters in one layer have the same size and shape, but the sizes and shapes of clusters in the two layers are different. The position of a CH within the cluster boundaries determines the overall energy consumption of nodes that belong to the cluster. To keep the total energy dissipation within the cluster as small as possible, every CH should be positioned at the center of the cluster. CHs are deterministically deployed in the network and are assumed to be super nodes which are much more expensive than MNs. By varying the radius of the first layer around the BS, while assuming a constant number of clusters in every layer, the area covered by clusters in each layer can be changed, and accordingly the number of nodes contained in a particular cluster can be changed. Data transmission is done through multiple hops, where every CH chooses to forward its data to the closest CH in the direction of the BS.

Bottom Line: Owing to a variety of advantages, clustering is becoming an active branch of routing technology in WSNs.In particular, we systematically analyze a few prominent WSN clustering routing protocols and compare these different approaches according to our taxonomy and several significant metrics.Finally, we summarize and conclude the paper with some future directions.

View Article: PubMed Central - PubMed

Affiliation: School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510641, China. liuxuxun@scut.edu.cn

ABSTRACT
The past few years have witnessed increased interest in the potential use of wireless sensor networks (WSNs) in a wide range of applications and it has become a hot research area. Based on network structure, routing protocols in WSNs can be divided into two categories: flat routing and hierarchical or clustering routing. Owing to a variety of advantages, clustering is becoming an active branch of routing technology in WSNs. In this paper, we present a comprehensive and fine grained survey on clustering routing protocols proposed in the literature for WSNs. We outline the advantages and objectives of clustering for WSNs, and develop a novel taxonomy of WSN clustering routing methods based on complete and detailed clustering attributes. In particular, we systematically analyze a few prominent WSN clustering routing protocols and compare these different approaches according to our taxonomy and several significant metrics. Finally, we summarize and conclude the paper with some future directions.

Show MeSH