Limits...
A survey on clustering routing protocols in wireless sensor networks.

Liu X - Sensors (Basel) (2012)

Bottom Line: Owing to a variety of advantages, clustering is becoming an active branch of routing technology in WSNs.In particular, we systematically analyze a few prominent WSN clustering routing protocols and compare these different approaches according to our taxonomy and several significant metrics.Finally, we summarize and conclude the paper with some future directions.

View Article: PubMed Central - PubMed

Affiliation: School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510641, China. liuxuxun@scut.edu.cn

ABSTRACT
The past few years have witnessed increased interest in the potential use of wireless sensor networks (WSNs) in a wide range of applications and it has become a hot research area. Based on network structure, routing protocols in WSNs can be divided into two categories: flat routing and hierarchical or clustering routing. Owing to a variety of advantages, clustering is becoming an active branch of routing technology in WSNs. In this paper, we present a comprehensive and fine grained survey on clustering routing protocols proposed in the literature for WSNs. We outline the advantages and objectives of clustering for WSNs, and develop a novel taxonomy of WSN clustering routing methods based on complete and detailed clustering attributes. In particular, we systematically analyze a few prominent WSN clustering routing protocols and compare these different approaches according to our taxonomy and several significant metrics. Finally, we summarize and conclude the paper with some future directions.

Show MeSH

Related in: MedlinePlus

Illumination of the Data Transmission Scheme in CCS.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3472877&req=5

f11-sensors-12-11113: Illumination of the Data Transmission Scheme in CCS.

Mentions: In CCS, the network is divided into a variety of concentric circular tracks which represent different clusters and each circular track is assigned with a level. The track nearest to the BS is assigned with level-1 and the level number increases with the increase of the distance to the BS. Thus, each node in the network is assigned with its own level. Besides, chains are constructed within the track as that in PEGASIS. One of the nodes on the chain at each level area is selected as a CH. A CH in level L is selected with node number obtained by calculating i mod ML, where ML represents the number of nodes that have the same level in i round. Data transmission in CCS is based on the process of PEGASIS protocol. After CH selection, each CH transmits the data of its own location to both the upper and lower level CH in one grade. In the process of the data transmission, all nodes in each level transmit the data to the nearest node from themselves along the chain. The node receives the data and fuses its own data and transmits these data to the next node. Therefore, the CH receives at most two data messages. Subsequently, the CH in each level transmits the data to the lower CH. At last, level 1 CH transmits these data to the BS. The data transmission scheme in CCS is shown in Figure 11.


A survey on clustering routing protocols in wireless sensor networks.

Liu X - Sensors (Basel) (2012)

Illumination of the Data Transmission Scheme in CCS.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3472877&req=5

f11-sensors-12-11113: Illumination of the Data Transmission Scheme in CCS.
Mentions: In CCS, the network is divided into a variety of concentric circular tracks which represent different clusters and each circular track is assigned with a level. The track nearest to the BS is assigned with level-1 and the level number increases with the increase of the distance to the BS. Thus, each node in the network is assigned with its own level. Besides, chains are constructed within the track as that in PEGASIS. One of the nodes on the chain at each level area is selected as a CH. A CH in level L is selected with node number obtained by calculating i mod ML, where ML represents the number of nodes that have the same level in i round. Data transmission in CCS is based on the process of PEGASIS protocol. After CH selection, each CH transmits the data of its own location to both the upper and lower level CH in one grade. In the process of the data transmission, all nodes in each level transmit the data to the nearest node from themselves along the chain. The node receives the data and fuses its own data and transmits these data to the next node. Therefore, the CH receives at most two data messages. Subsequently, the CH in each level transmits the data to the lower CH. At last, level 1 CH transmits these data to the BS. The data transmission scheme in CCS is shown in Figure 11.

Bottom Line: Owing to a variety of advantages, clustering is becoming an active branch of routing technology in WSNs.In particular, we systematically analyze a few prominent WSN clustering routing protocols and compare these different approaches according to our taxonomy and several significant metrics.Finally, we summarize and conclude the paper with some future directions.

View Article: PubMed Central - PubMed

Affiliation: School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510641, China. liuxuxun@scut.edu.cn

ABSTRACT
The past few years have witnessed increased interest in the potential use of wireless sensor networks (WSNs) in a wide range of applications and it has become a hot research area. Based on network structure, routing protocols in WSNs can be divided into two categories: flat routing and hierarchical or clustering routing. Owing to a variety of advantages, clustering is becoming an active branch of routing technology in WSNs. In this paper, we present a comprehensive and fine grained survey on clustering routing protocols proposed in the literature for WSNs. We outline the advantages and objectives of clustering for WSNs, and develop a novel taxonomy of WSN clustering routing methods based on complete and detailed clustering attributes. In particular, we systematically analyze a few prominent WSN clustering routing protocols and compare these different approaches according to our taxonomy and several significant metrics. Finally, we summarize and conclude the paper with some future directions.

Show MeSH
Related in: MedlinePlus