Limits...
Design and fabrication of a large-stroke deformable mirror using a gear-shape ionic-conductive polymer metal composite.

Wei HC, Su GD - Sensors (Basel) (2012)

Bottom Line: Finally, a gear shaped IPMC actuator was designed and tested.Optical power of the IPMC deformable mirror is experimentally demonstrated to be 17 diopters with two volts.The needed voltage was about two orders lower than conventional silicon deformable mirrors and about one order lower than the liquid lens.

View Article: PubMed Central - PubMed

Affiliation: Graduate Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, Roosevelt Road, Section 4, Taipei 10617, Taiwan. d96941017@ntu.edu.tw

ABSTRACT
Conventional camera modules with image sensors manipulate the focus or zoom by moving lenses. Although motors, such as voice-coil motors, can move the lens sets precisely, large volume, high power consumption, and long moving time are critical issues for motor-type camera modules. A deformable mirror (DM) provides a good opportunity to improve these issues. The DM is a reflective type optical component which can alter the optical power to focus the lights on the two dimensional optical image sensors. It can make the camera system operate rapidly. Ionic polymer metal composite (IPMC) is a promising electro-actuated polymer material that can be used in micromachining devices because of its large deformation with low actuation voltage. We developed a convenient simulation model based on Young's modulus and Poisson's ratio. We divided an ion exchange polymer, also known as Nafion(®), into two virtual layers in the simulation model: one was expansive and the other was contractive, caused by opposite constant surface forces on each surface of the elements. Therefore, the deformation for different IPMC shapes can be described more easily. A standard experiment of voltage vs. tip displacement was used to verify the proposed modeling. Finally, a gear shaped IPMC actuator was designed and tested. Optical power of the IPMC deformable mirror is experimentally demonstrated to be 17 diopters with two volts. The needed voltage was about two orders lower than conventional silicon deformable mirrors and about one order lower than the liquid lens.

No MeSH data available.


The IPMC process flow. (a) ion exchange polymer formation and pre-process; (b) initial compositing; (c) surface electrode growing; (d) shape cutting and immersing in the salt solution.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3472876&req=5

f6-sensors-12-11100: The IPMC process flow. (a) ion exchange polymer formation and pre-process; (b) initial compositing; (c) surface electrode growing; (d) shape cutting and immersing in the salt solution.

Mentions: A new deformable mirror with a gear-shaped IPMC design was presented in this paper. The designed model is shown in Figure 5. There were three fixed arms and a free mirror at the center. The mirror was 12 mm in radius, the length and the width of the fixed arm was 8 mm and 4 mm, and the thickness of metal and half thickness of Nafion® were 10 μm and 100 μm, respectively. The size was chosen to achieve the desired deformation for optical applications. There are four major steps to make IPMC actuators: (a) ion exchange polymer (often called ionomer) formation and pre-processing; (b) initial compositing; (c) surface electrode growing; (d) shape cutting. Figure 6 shows the fabrication process of the gear-shape IPMC deformable mirror. The effective recipe (Sections 3.1–3.3, [13]) used to manufacture the IPMC materials was based on electroless plating with some minor revisions.


Design and fabrication of a large-stroke deformable mirror using a gear-shape ionic-conductive polymer metal composite.

Wei HC, Su GD - Sensors (Basel) (2012)

The IPMC process flow. (a) ion exchange polymer formation and pre-process; (b) initial compositing; (c) surface electrode growing; (d) shape cutting and immersing in the salt solution.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3472876&req=5

f6-sensors-12-11100: The IPMC process flow. (a) ion exchange polymer formation and pre-process; (b) initial compositing; (c) surface electrode growing; (d) shape cutting and immersing in the salt solution.
Mentions: A new deformable mirror with a gear-shaped IPMC design was presented in this paper. The designed model is shown in Figure 5. There were three fixed arms and a free mirror at the center. The mirror was 12 mm in radius, the length and the width of the fixed arm was 8 mm and 4 mm, and the thickness of metal and half thickness of Nafion® were 10 μm and 100 μm, respectively. The size was chosen to achieve the desired deformation for optical applications. There are four major steps to make IPMC actuators: (a) ion exchange polymer (often called ionomer) formation and pre-processing; (b) initial compositing; (c) surface electrode growing; (d) shape cutting. Figure 6 shows the fabrication process of the gear-shape IPMC deformable mirror. The effective recipe (Sections 3.1–3.3, [13]) used to manufacture the IPMC materials was based on electroless plating with some minor revisions.

Bottom Line: Finally, a gear shaped IPMC actuator was designed and tested.Optical power of the IPMC deformable mirror is experimentally demonstrated to be 17 diopters with two volts.The needed voltage was about two orders lower than conventional silicon deformable mirrors and about one order lower than the liquid lens.

View Article: PubMed Central - PubMed

Affiliation: Graduate Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, Roosevelt Road, Section 4, Taipei 10617, Taiwan. d96941017@ntu.edu.tw

ABSTRACT
Conventional camera modules with image sensors manipulate the focus or zoom by moving lenses. Although motors, such as voice-coil motors, can move the lens sets precisely, large volume, high power consumption, and long moving time are critical issues for motor-type camera modules. A deformable mirror (DM) provides a good opportunity to improve these issues. The DM is a reflective type optical component which can alter the optical power to focus the lights on the two dimensional optical image sensors. It can make the camera system operate rapidly. Ionic polymer metal composite (IPMC) is a promising electro-actuated polymer material that can be used in micromachining devices because of its large deformation with low actuation voltage. We developed a convenient simulation model based on Young's modulus and Poisson's ratio. We divided an ion exchange polymer, also known as Nafion(®), into two virtual layers in the simulation model: one was expansive and the other was contractive, caused by opposite constant surface forces on each surface of the elements. Therefore, the deformation for different IPMC shapes can be described more easily. A standard experiment of voltage vs. tip displacement was used to verify the proposed modeling. Finally, a gear shaped IPMC actuator was designed and tested. Optical power of the IPMC deformable mirror is experimentally demonstrated to be 17 diopters with two volts. The needed voltage was about two orders lower than conventional silicon deformable mirrors and about one order lower than the liquid lens.

No MeSH data available.