Limits...
Fully integrated biochip platforms for advanced healthcare.

Carrara S, Ghoreishizadeh S, Olivo J, Taurino I, Baj-Rossi C, Cavallini A, de Beeck MO, Dehollain C, Burleson W, Moussy FG, Guiseppi-Elie A, De Micheli G - Sensors (Basel) (2012)

Bottom Line: However, several issues have to be considered in order to succeed in developing fully integrated and minimally invasive implantable devices.Recent advances in the field have already proposed possible solutions for several of these issues.The aim of the present paper is to present a broad spectrum of recent results and to propose future directions of development in order to obtain fully implantable systems for the continuous monitoring of the human metabolism in advanced healthcare applications.

View Article: PubMed Central - PubMed

Affiliation: École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland. sandro.carrara@epfl.ch

ABSTRACT
Recent advances in microelectronics and biosensors are enabling developments of innovative biochips for advanced healthcare by providing fully integrated platforms for continuous monitoring of a large set of human disease biomarkers. Continuous monitoring of several human metabolites can be addressed by using fully integrated and minimally invasive devices located in the sub-cutis, typically in the peritoneal region. This extends the techniques of continuous monitoring of glucose currently being pursued with diabetic patients. However, several issues have to be considered in order to succeed in developing fully integrated and minimally invasive implantable devices. These innovative devices require a high-degree of integration, minimal invasive surgery, long-term biocompatibility, security and privacy in data transmission, high reliability, high reproducibility, high specificity, low detection limit and high sensitivity. Recent advances in the field have already proposed possible solutions for several of these issues. The aim of the present paper is to present a broad spectrum of recent results and to propose future directions of development in order to obtain fully implantable systems for the continuous monitoring of the human metabolism in advanced healthcare applications.

Show MeSH

Related in: MedlinePlus

Multi-array platforms and CNT integration.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3472872&req=5

f6-sensors-12-11013: Multi-array platforms and CNT integration.

Mentions: In the last few years the use of miniaturized electrodes fabricated by thin-film technology has become more and more common in sensor research because it gives some advantages (e.g., smaller background current and faster time response). The combination of microelectrode devices with the immobilization of biochemical compounds such as enzymes provides excellent prerequisites for the development of miniaturized biosensors in order to monitor many metabolites in parallel [164]. These biodevices should be composed of working electrodes that share the same counter and reference electrodes. Working electrodes have to be functionalized first with MWCNTs to increase sensitivity and decrease the detection limit (Figure 6).


Fully integrated biochip platforms for advanced healthcare.

Carrara S, Ghoreishizadeh S, Olivo J, Taurino I, Baj-Rossi C, Cavallini A, de Beeck MO, Dehollain C, Burleson W, Moussy FG, Guiseppi-Elie A, De Micheli G - Sensors (Basel) (2012)

Multi-array platforms and CNT integration.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3472872&req=5

f6-sensors-12-11013: Multi-array platforms and CNT integration.
Mentions: In the last few years the use of miniaturized electrodes fabricated by thin-film technology has become more and more common in sensor research because it gives some advantages (e.g., smaller background current and faster time response). The combination of microelectrode devices with the immobilization of biochemical compounds such as enzymes provides excellent prerequisites for the development of miniaturized biosensors in order to monitor many metabolites in parallel [164]. These biodevices should be composed of working electrodes that share the same counter and reference electrodes. Working electrodes have to be functionalized first with MWCNTs to increase sensitivity and decrease the detection limit (Figure 6).

Bottom Line: However, several issues have to be considered in order to succeed in developing fully integrated and minimally invasive implantable devices.Recent advances in the field have already proposed possible solutions for several of these issues.The aim of the present paper is to present a broad spectrum of recent results and to propose future directions of development in order to obtain fully implantable systems for the continuous monitoring of the human metabolism in advanced healthcare applications.

View Article: PubMed Central - PubMed

Affiliation: École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland. sandro.carrara@epfl.ch

ABSTRACT
Recent advances in microelectronics and biosensors are enabling developments of innovative biochips for advanced healthcare by providing fully integrated platforms for continuous monitoring of a large set of human disease biomarkers. Continuous monitoring of several human metabolites can be addressed by using fully integrated and minimally invasive devices located in the sub-cutis, typically in the peritoneal region. This extends the techniques of continuous monitoring of glucose currently being pursued with diabetic patients. However, several issues have to be considered in order to succeed in developing fully integrated and minimally invasive implantable devices. These innovative devices require a high-degree of integration, minimal invasive surgery, long-term biocompatibility, security and privacy in data transmission, high reliability, high reproducibility, high specificity, low detection limit and high sensitivity. Recent advances in the field have already proposed possible solutions for several of these issues. The aim of the present paper is to present a broad spectrum of recent results and to propose future directions of development in order to obtain fully implantable systems for the continuous monitoring of the human metabolism in advanced healthcare applications.

Show MeSH
Related in: MedlinePlus