Limits...
Fully integrated biochip platforms for advanced healthcare.

Carrara S, Ghoreishizadeh S, Olivo J, Taurino I, Baj-Rossi C, Cavallini A, de Beeck MO, Dehollain C, Burleson W, Moussy FG, Guiseppi-Elie A, De Micheli G - Sensors (Basel) (2012)

Bottom Line: However, several issues have to be considered in order to succeed in developing fully integrated and minimally invasive implantable devices.Recent advances in the field have already proposed possible solutions for several of these issues.The aim of the present paper is to present a broad spectrum of recent results and to propose future directions of development in order to obtain fully implantable systems for the continuous monitoring of the human metabolism in advanced healthcare applications.

View Article: PubMed Central - PubMed

Affiliation: École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland. sandro.carrara@epfl.ch

ABSTRACT
Recent advances in microelectronics and biosensors are enabling developments of innovative biochips for advanced healthcare by providing fully integrated platforms for continuous monitoring of a large set of human disease biomarkers. Continuous monitoring of several human metabolites can be addressed by using fully integrated and minimally invasive devices located in the sub-cutis, typically in the peritoneal region. This extends the techniques of continuous monitoring of glucose currently being pursued with diabetic patients. However, several issues have to be considered in order to succeed in developing fully integrated and minimally invasive implantable devices. These innovative devices require a high-degree of integration, minimal invasive surgery, long-term biocompatibility, security and privacy in data transmission, high reliability, high reproducibility, high specificity, low detection limit and high sensitivity. Recent advances in the field have already proposed possible solutions for several of these issues. The aim of the present paper is to present a broad spectrum of recent results and to propose future directions of development in order to obtain fully implantable systems for the continuous monitoring of the human metabolism in advanced healthcare applications.

Show MeSH

Related in: MedlinePlus

Applications to remote monitoring of human health.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3472872&req=5

f20-sensors-12-11013: Applications to remote monitoring of human health.

Mentions: Gathering mobile network also means opening to remote control of patients in parallel from the hospital to elsewhere (Figure 20). So, full management of patients at home or during their normal life activities is then possible with such kind remote monitoring biochip platforms in order to assure advanced healthcare services for fast intervention in case of fatal events, personalized therapy, continuous support to chronic and elderly people, etc.


Fully integrated biochip platforms for advanced healthcare.

Carrara S, Ghoreishizadeh S, Olivo J, Taurino I, Baj-Rossi C, Cavallini A, de Beeck MO, Dehollain C, Burleson W, Moussy FG, Guiseppi-Elie A, De Micheli G - Sensors (Basel) (2012)

Applications to remote monitoring of human health.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3472872&req=5

f20-sensors-12-11013: Applications to remote monitoring of human health.
Mentions: Gathering mobile network also means opening to remote control of patients in parallel from the hospital to elsewhere (Figure 20). So, full management of patients at home or during their normal life activities is then possible with such kind remote monitoring biochip platforms in order to assure advanced healthcare services for fast intervention in case of fatal events, personalized therapy, continuous support to chronic and elderly people, etc.

Bottom Line: However, several issues have to be considered in order to succeed in developing fully integrated and minimally invasive implantable devices.Recent advances in the field have already proposed possible solutions for several of these issues.The aim of the present paper is to present a broad spectrum of recent results and to propose future directions of development in order to obtain fully implantable systems for the continuous monitoring of the human metabolism in advanced healthcare applications.

View Article: PubMed Central - PubMed

Affiliation: École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland. sandro.carrara@epfl.ch

ABSTRACT
Recent advances in microelectronics and biosensors are enabling developments of innovative biochips for advanced healthcare by providing fully integrated platforms for continuous monitoring of a large set of human disease biomarkers. Continuous monitoring of several human metabolites can be addressed by using fully integrated and minimally invasive devices located in the sub-cutis, typically in the peritoneal region. This extends the techniques of continuous monitoring of glucose currently being pursued with diabetic patients. However, several issues have to be considered in order to succeed in developing fully integrated and minimally invasive implantable devices. These innovative devices require a high-degree of integration, minimal invasive surgery, long-term biocompatibility, security and privacy in data transmission, high reliability, high reproducibility, high specificity, low detection limit and high sensitivity. Recent advances in the field have already proposed possible solutions for several of these issues. The aim of the present paper is to present a broad spectrum of recent results and to propose future directions of development in order to obtain fully implantable systems for the continuous monitoring of the human metabolism in advanced healthcare applications.

Show MeSH
Related in: MedlinePlus