Limits...
Fully integrated biochip platforms for advanced healthcare.

Carrara S, Ghoreishizadeh S, Olivo J, Taurino I, Baj-Rossi C, Cavallini A, de Beeck MO, Dehollain C, Burleson W, Moussy FG, Guiseppi-Elie A, De Micheli G - Sensors (Basel) (2012)

Bottom Line: However, several issues have to be considered in order to succeed in developing fully integrated and minimally invasive implantable devices.Recent advances in the field have already proposed possible solutions for several of these issues.The aim of the present paper is to present a broad spectrum of recent results and to propose future directions of development in order to obtain fully implantable systems for the continuous monitoring of the human metabolism in advanced healthcare applications.

View Article: PubMed Central - PubMed

Affiliation: École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland. sandro.carrara@epfl.ch

ABSTRACT
Recent advances in microelectronics and biosensors are enabling developments of innovative biochips for advanced healthcare by providing fully integrated platforms for continuous monitoring of a large set of human disease biomarkers. Continuous monitoring of several human metabolites can be addressed by using fully integrated and minimally invasive devices located in the sub-cutis, typically in the peritoneal region. This extends the techniques of continuous monitoring of glucose currently being pursued with diabetic patients. However, several issues have to be considered in order to succeed in developing fully integrated and minimally invasive implantable devices. These innovative devices require a high-degree of integration, minimal invasive surgery, long-term biocompatibility, security and privacy in data transmission, high reliability, high reproducibility, high specificity, low detection limit and high sensitivity. Recent advances in the field have already proposed possible solutions for several of these issues. The aim of the present paper is to present a broad spectrum of recent results and to propose future directions of development in order to obtain fully implantable systems for the continuous monitoring of the human metabolism in advanced healthcare applications.

Show MeSH

Related in: MedlinePlus

Schematic of the surface electrode array with the potentiostat and the readout circuit.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3472872&req=5

f11-sensors-12-11013: Schematic of the surface electrode array with the potentiostat and the readout circuit.

Mentions: Many works have been done to design biosensor readout circuits. In the work of Ahmadi and Jullien [184] and Haider et al. [185], the sensor current was converted to frequency, which can be sent out by backscattering without any need for an ADC. However this complicates data processing steps such as error correction, storage or data encryption. In Li et al. [186] a switch-capacitor was used together with a synthesis method to suppress the noise and the offset of the amplifier. It amplifies a wide range of sensor current 100 fA–100 pA and converts it to voltage. Then, using an ADC, the voltage was digitized and can be modulated and sent out of the implanted device (Figure 11).


Fully integrated biochip platforms for advanced healthcare.

Carrara S, Ghoreishizadeh S, Olivo J, Taurino I, Baj-Rossi C, Cavallini A, de Beeck MO, Dehollain C, Burleson W, Moussy FG, Guiseppi-Elie A, De Micheli G - Sensors (Basel) (2012)

Schematic of the surface electrode array with the potentiostat and the readout circuit.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3472872&req=5

f11-sensors-12-11013: Schematic of the surface electrode array with the potentiostat and the readout circuit.
Mentions: Many works have been done to design biosensor readout circuits. In the work of Ahmadi and Jullien [184] and Haider et al. [185], the sensor current was converted to frequency, which can be sent out by backscattering without any need for an ADC. However this complicates data processing steps such as error correction, storage or data encryption. In Li et al. [186] a switch-capacitor was used together with a synthesis method to suppress the noise and the offset of the amplifier. It amplifies a wide range of sensor current 100 fA–100 pA and converts it to voltage. Then, using an ADC, the voltage was digitized and can be modulated and sent out of the implanted device (Figure 11).

Bottom Line: However, several issues have to be considered in order to succeed in developing fully integrated and minimally invasive implantable devices.Recent advances in the field have already proposed possible solutions for several of these issues.The aim of the present paper is to present a broad spectrum of recent results and to propose future directions of development in order to obtain fully implantable systems for the continuous monitoring of the human metabolism in advanced healthcare applications.

View Article: PubMed Central - PubMed

Affiliation: École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland. sandro.carrara@epfl.ch

ABSTRACT
Recent advances in microelectronics and biosensors are enabling developments of innovative biochips for advanced healthcare by providing fully integrated platforms for continuous monitoring of a large set of human disease biomarkers. Continuous monitoring of several human metabolites can be addressed by using fully integrated and minimally invasive devices located in the sub-cutis, typically in the peritoneal region. This extends the techniques of continuous monitoring of glucose currently being pursued with diabetic patients. However, several issues have to be considered in order to succeed in developing fully integrated and minimally invasive implantable devices. These innovative devices require a high-degree of integration, minimal invasive surgery, long-term biocompatibility, security and privacy in data transmission, high reliability, high reproducibility, high specificity, low detection limit and high sensitivity. Recent advances in the field have already proposed possible solutions for several of these issues. The aim of the present paper is to present a broad spectrum of recent results and to propose future directions of development in order to obtain fully implantable systems for the continuous monitoring of the human metabolism in advanced healthcare applications.

Show MeSH
Related in: MedlinePlus