Limits...
Aircraft aerodynamic parameter detection using micro hot-film flow sensor array and BP neural network identification.

Que R, Zhu R - Sensors (Basel) (2012)

Bottom Line: Air speed, angle of sideslip and angle of attack are fundamental aerodynamic parameters for controlling most aircraft.For small aircraft for which conventional detecting devices are too bulky and heavy to be utilized, a novel and practical methodology by which the aerodynamic parameters are inferred using a micro hot-film flow sensor array mounted on the surface of the wing is proposed.A back-propagation neural network is used to model the coupling relationship between readings of the sensor array and aerodynamic parameters.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084, China. katykob@163.com

ABSTRACT
Air speed, angle of sideslip and angle of attack are fundamental aerodynamic parameters for controlling most aircraft. For small aircraft for which conventional detecting devices are too bulky and heavy to be utilized, a novel and practical methodology by which the aerodynamic parameters are inferred using a micro hot-film flow sensor array mounted on the surface of the wing is proposed. A back-propagation neural network is used to model the coupling relationship between readings of the sensor array and aerodynamic parameters. Two different sensor arrangements are tested in wind tunnel experiments and dependence of the system performance on the sensor arrangement is analyzed.

No MeSH data available.


Related in: MedlinePlus

Scheme of a CTD mode driving circuit.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3472866&req=5

f3-sensors-12-10920: Scheme of a CTD mode driving circuit.

Mentions: Hot film flow sensors can be operated either in constant voltage (CV), constant current (CC) and constant temperature difference (CTD) modes. In this work, the CTD mode, a scheme of which is shown in Figure 3, was used considering the superiorities of its sensitivity and dynamic response [11–13]. In the figure Rh is a thermal flow sensor, Rc is a temperature compensating sensor, Rtb is used to adjust the Joule heating level of Rh [14], Ra and Rb are the rest legs of the bridge.


Aircraft aerodynamic parameter detection using micro hot-film flow sensor array and BP neural network identification.

Que R, Zhu R - Sensors (Basel) (2012)

Scheme of a CTD mode driving circuit.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3472866&req=5

f3-sensors-12-10920: Scheme of a CTD mode driving circuit.
Mentions: Hot film flow sensors can be operated either in constant voltage (CV), constant current (CC) and constant temperature difference (CTD) modes. In this work, the CTD mode, a scheme of which is shown in Figure 3, was used considering the superiorities of its sensitivity and dynamic response [11–13]. In the figure Rh is a thermal flow sensor, Rc is a temperature compensating sensor, Rtb is used to adjust the Joule heating level of Rh [14], Ra and Rb are the rest legs of the bridge.

Bottom Line: Air speed, angle of sideslip and angle of attack are fundamental aerodynamic parameters for controlling most aircraft.For small aircraft for which conventional detecting devices are too bulky and heavy to be utilized, a novel and practical methodology by which the aerodynamic parameters are inferred using a micro hot-film flow sensor array mounted on the surface of the wing is proposed.A back-propagation neural network is used to model the coupling relationship between readings of the sensor array and aerodynamic parameters.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084, China. katykob@163.com

ABSTRACT
Air speed, angle of sideslip and angle of attack are fundamental aerodynamic parameters for controlling most aircraft. For small aircraft for which conventional detecting devices are too bulky and heavy to be utilized, a novel and practical methodology by which the aerodynamic parameters are inferred using a micro hot-film flow sensor array mounted on the surface of the wing is proposed. A back-propagation neural network is used to model the coupling relationship between readings of the sensor array and aerodynamic parameters. Two different sensor arrangements are tested in wind tunnel experiments and dependence of the system performance on the sensor arrangement is analyzed.

No MeSH data available.


Related in: MedlinePlus