Limits...
A comb-drive actuator driven by capacitively-coupled-power.

Chang CM, Wang SY, Chen R, Yeh JA, Hou MT - Sensors (Basel) (2012)

Bottom Line: The results show that the actuator worked well using the proposed actuation mechanism.Using the actuation mechanism, no electrical connection is required between the rotor and the outside power supply.This makes some comb-drive actuators containing heterogeneous structures easy to design and actuate.

View Article: PubMed Central - PubMed

Affiliation: Institute of NanoEngineering and MicroSystems, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan. chaomin.chang@gmail.com

ABSTRACT
This paper presents a new actuation mechanism to drive comb-drive actuators. An asymmetric configuration of the finger overlap was used to generate capacitive coupling for the actuation mechanism. When the driving voltages were applied on the stators, a voltage would be induced at the rotor due to the capacitive coupling. Then, an electrostatic force would be exerted onto the rotor due to the voltage differences between the stators and the rotor. The actuator's static displacement and resonant frequency were theoretically analyzed. To verify the design, a comb-drive actuator with different initial finger overlaps, i.e., 159.3 μm and 48.9 μm on each side, was fabricated and tested. The results show that the actuator worked well using the proposed actuation mechanism. A static displacement of 41.7 μm and a resonant frequency of 577 Hz were achieved. Using the actuation mechanism, no electrical connection is required between the rotor and the outside power supply. This makes some comb-drive actuators containing heterogeneous structures easy to design and actuate.

No MeSH data available.


(a) The testing model: a proposed actuator is sandwiched between a pair of parallel plates. A voltage of Vsef is applied on the upper plate, and the lower plate is grounded. A surrounding electrostatic field will be created as a possible outside interference. (b) The Vr difference induced by the surrounding electrostatic field.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3472863&req=5

f2-sensors-12-10881: (a) The testing model: a proposed actuator is sandwiched between a pair of parallel plates. A voltage of Vsef is applied on the upper plate, and the lower plate is grounded. A surrounding electrostatic field will be created as a possible outside interference. (b) The Vr difference induced by the surrounding electrostatic field.

Mentions: In this paper, we assume the surrounding electrostatic field is comparatively small, thus its influence was omitted. To ensure the validity of the assumption, the influence of surrounding electrostatic field was evaluated by simulation analysis using CoventorWare software. Figure 2(a) shows the model on which we performed the evaluation. A comb-drive actuator using the proposed actuation mechanism was sandwiched between two imaginary parallel plates. A dc voltage was applied onto the parallel plates to create a surrounding electrostatic field. Two factors, i.e., the distance between the actuator and the upper or lower plate, gcp, and the applied voltage, Vsef, were taken into consideration. Figure 2(b) shows the simulation results. The value of gcp and Vsef refer to actual conditions of IC packaging and operation. Typically, gcp is larger than 500 μm and Vsef is less than 25 volts. In this case, the actuator is surrounded by an electrostatic field of 50 kV/m, and then about 0.9% Vr difference will be induced. Hence, the influence of outside electrostatic field can be ignored.


A comb-drive actuator driven by capacitively-coupled-power.

Chang CM, Wang SY, Chen R, Yeh JA, Hou MT - Sensors (Basel) (2012)

(a) The testing model: a proposed actuator is sandwiched between a pair of parallel plates. A voltage of Vsef is applied on the upper plate, and the lower plate is grounded. A surrounding electrostatic field will be created as a possible outside interference. (b) The Vr difference induced by the surrounding electrostatic field.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3472863&req=5

f2-sensors-12-10881: (a) The testing model: a proposed actuator is sandwiched between a pair of parallel plates. A voltage of Vsef is applied on the upper plate, and the lower plate is grounded. A surrounding electrostatic field will be created as a possible outside interference. (b) The Vr difference induced by the surrounding electrostatic field.
Mentions: In this paper, we assume the surrounding electrostatic field is comparatively small, thus its influence was omitted. To ensure the validity of the assumption, the influence of surrounding electrostatic field was evaluated by simulation analysis using CoventorWare software. Figure 2(a) shows the model on which we performed the evaluation. A comb-drive actuator using the proposed actuation mechanism was sandwiched between two imaginary parallel plates. A dc voltage was applied onto the parallel plates to create a surrounding electrostatic field. Two factors, i.e., the distance between the actuator and the upper or lower plate, gcp, and the applied voltage, Vsef, were taken into consideration. Figure 2(b) shows the simulation results. The value of gcp and Vsef refer to actual conditions of IC packaging and operation. Typically, gcp is larger than 500 μm and Vsef is less than 25 volts. In this case, the actuator is surrounded by an electrostatic field of 50 kV/m, and then about 0.9% Vr difference will be induced. Hence, the influence of outside electrostatic field can be ignored.

Bottom Line: The results show that the actuator worked well using the proposed actuation mechanism.Using the actuation mechanism, no electrical connection is required between the rotor and the outside power supply.This makes some comb-drive actuators containing heterogeneous structures easy to design and actuate.

View Article: PubMed Central - PubMed

Affiliation: Institute of NanoEngineering and MicroSystems, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan. chaomin.chang@gmail.com

ABSTRACT
This paper presents a new actuation mechanism to drive comb-drive actuators. An asymmetric configuration of the finger overlap was used to generate capacitive coupling for the actuation mechanism. When the driving voltages were applied on the stators, a voltage would be induced at the rotor due to the capacitive coupling. Then, an electrostatic force would be exerted onto the rotor due to the voltage differences between the stators and the rotor. The actuator's static displacement and resonant frequency were theoretically analyzed. To verify the design, a comb-drive actuator with different initial finger overlaps, i.e., 159.3 μm and 48.9 μm on each side, was fabricated and tested. The results show that the actuator worked well using the proposed actuation mechanism. A static displacement of 41.7 μm and a resonant frequency of 577 Hz were achieved. Using the actuation mechanism, no electrical connection is required between the rotor and the outside power supply. This makes some comb-drive actuators containing heterogeneous structures easy to design and actuate.

No MeSH data available.