Limits...
Lab-on-a-chip pathogen sensors for food safety.

Yoon JY, Kim B - Sensors (Basel) (2012)

Bottom Line: Several different types of lab-on-a-chip biosensors, including immunoassay- and PCR-based, have been developed and tested for detecting foodborne pathogens.Their assay performance, including detection limit and assay time, are also summarized.Finally, the use of optical fibers or optical waveguide is discussed as a means to improve the portability and sensitivity of lab-on-a-chip pathogen sensors.

View Article: PubMed Central - PubMed

Affiliation: Department of Agricultural and Biosystems Engineering, the University of Arizona, Tucson, AZ 85721, USA. jyyoon@email.arizona.edu

ABSTRACT
There have been a number of cases of foodborne illness among humans that are caused by pathogens such as Escherichia coli O157:H7, Salmonella typhimurium, etc. The current practices to detect such pathogenic agents are cell culturing, immunoassays, or polymerase chain reactions (PCRs). These methods are essentially laboratory-based methods that are not at all real-time and thus unavailable for early-monitoring of such pathogens. They are also very difficult to implement in the field. Lab-on-a-chip biosensors, however, have a strong potential to be used in the field since they can be miniaturized and automated; they are also potentially fast and very sensitive. These lab-on-a-chip biosensors can detect pathogens in farms, packaging/processing facilities, delivery/distribution systems, and at the consumer level. There are still several issues to be resolved before applying these lab-on-a-chip sensors to field applications, including the pre-treatment of a sample, proper storage of reagents, full integration into a battery-powered system, and demonstration of very high sensitivity, which are addressed in this review article. Several different types of lab-on-a-chip biosensors, including immunoassay- and PCR-based, have been developed and tested for detecting foodborne pathogens. Their assay performance, including detection limit and assay time, are also summarized. Finally, the use of optical fibers or optical waveguide is discussed as a means to improve the portability and sensitivity of lab-on-a-chip pathogen sensors.

Show MeSH

Related in: MedlinePlus

Embedded and proximity optical fibers for lab-on-a-chip. Reprinted from [47] with permission © American Society for Agricultural and Biological Engineers.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3472853&req=5

f15-sensors-12-10713: Embedded and proximity optical fibers for lab-on-a-chip. Reprinted from [47] with permission © American Society for Agricultural and Biological Engineers.

Mentions: In general, the use of optical fibers in lab-on-a-chips falls into two categories of fiber orientation, as shown in Figure 15: (1) embedded fibers; and (2) proximity fibers. Embedded fibers are actually incorporated within a lab-on-a-chip device with physical contact to microchannel structures. This strategy offers the best performance with insignificant signal loss. However, it does require more complicated fabrication processes.


Lab-on-a-chip pathogen sensors for food safety.

Yoon JY, Kim B - Sensors (Basel) (2012)

Embedded and proximity optical fibers for lab-on-a-chip. Reprinted from [47] with permission © American Society for Agricultural and Biological Engineers.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3472853&req=5

f15-sensors-12-10713: Embedded and proximity optical fibers for lab-on-a-chip. Reprinted from [47] with permission © American Society for Agricultural and Biological Engineers.
Mentions: In general, the use of optical fibers in lab-on-a-chips falls into two categories of fiber orientation, as shown in Figure 15: (1) embedded fibers; and (2) proximity fibers. Embedded fibers are actually incorporated within a lab-on-a-chip device with physical contact to microchannel structures. This strategy offers the best performance with insignificant signal loss. However, it does require more complicated fabrication processes.

Bottom Line: Several different types of lab-on-a-chip biosensors, including immunoassay- and PCR-based, have been developed and tested for detecting foodborne pathogens.Their assay performance, including detection limit and assay time, are also summarized.Finally, the use of optical fibers or optical waveguide is discussed as a means to improve the portability and sensitivity of lab-on-a-chip pathogen sensors.

View Article: PubMed Central - PubMed

Affiliation: Department of Agricultural and Biosystems Engineering, the University of Arizona, Tucson, AZ 85721, USA. jyyoon@email.arizona.edu

ABSTRACT
There have been a number of cases of foodborne illness among humans that are caused by pathogens such as Escherichia coli O157:H7, Salmonella typhimurium, etc. The current practices to detect such pathogenic agents are cell culturing, immunoassays, or polymerase chain reactions (PCRs). These methods are essentially laboratory-based methods that are not at all real-time and thus unavailable for early-monitoring of such pathogens. They are also very difficult to implement in the field. Lab-on-a-chip biosensors, however, have a strong potential to be used in the field since they can be miniaturized and automated; they are also potentially fast and very sensitive. These lab-on-a-chip biosensors can detect pathogens in farms, packaging/processing facilities, delivery/distribution systems, and at the consumer level. There are still several issues to be resolved before applying these lab-on-a-chip sensors to field applications, including the pre-treatment of a sample, proper storage of reagents, full integration into a battery-powered system, and demonstration of very high sensitivity, which are addressed in this review article. Several different types of lab-on-a-chip biosensors, including immunoassay- and PCR-based, have been developed and tested for detecting foodborne pathogens. Their assay performance, including detection limit and assay time, are also summarized. Finally, the use of optical fibers or optical waveguide is discussed as a means to improve the portability and sensitivity of lab-on-a-chip pathogen sensors.

Show MeSH
Related in: MedlinePlus