Limits...
A wide linear range Eddy Current Displacement Sensor equipped with dual-coil probe applied in the Magnetic Suspension Flywheel.

Fang J, Wen T - Sensors (Basel) (2012)

Bottom Line: The Eddy Current Displacement Sensor (ECDS) is widely used in the Magnetic Suspension Flywheel (MSFW) to measure the tiny clearance between the rotor and the magnetic bearings.Wide clearances must be measured in some new MSFWs recently designed for the different space missions, but the coil diameter is limited by some restrictions.The effectiveness of the linear range extension ability and the dynamic response of the designed ECDS are confirmed by the testing and the applications in the MSFW.

View Article: PubMed Central - PubMed

Affiliation: Science and Technology on Inertial Laboratory, School of Instrumentation Science and Opto-Electronics Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China. fangjiancheng@buaa.edu.cn

ABSTRACT
The Eddy Current Displacement Sensor (ECDS) is widely used in the Magnetic Suspension Flywheel (MSFW) to measure the tiny clearance between the rotor and the magnetic bearings. The linear range of the ECDS is determined by the diameter of its probe coil. Wide clearances must be measured in some new MSFWs recently designed for the different space missions, but the coil diameter is limited by some restrictions. In this paper, a multi-channel ECDS equipped with dual-coil probes is proposed to extend the linear range to satisfy the demands of such MSFWs. In order to determine the best configuration of the dual-coil probe, the quality factors of the potential types of the dual-coil probes, the induced eddy current and the magnetic intensity on the surface of the measuring object are compared with those of the conventional single-coil probe. The linear range of the ECDS equipped with the selected dual-coil probe is extended from 1.1 mm to 2.4 mm under the restrictions without adding any cost for additional compensation circuits or expensive coil materials. The effectiveness of the linear range extension ability and the dynamic response of the designed ECDS are confirmed by the testing and the applications in the MSFW.

No MeSH data available.


Related in: MedlinePlus

The rotor displacement locus measured by the designed dual-coil ECDS in α and β DOFs when the rotor rotates at 5,000 rpm.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3472851&req=5

f15-sensors-12-10693: The rotor displacement locus measured by the designed dual-coil ECDS in α and β DOFs when the rotor rotates at 5,000 rpm.

Mentions: Shown in Figure 15 is the rotor locus of the APH-MSFW in α and β DOFs when the rotor is rotating at 5,000 rpm. The testing results show that the dual-probe ECDS could ensure the MSFW operating in its rotating speed range ±5,000 rpm. The bandwidth of the dual-coil ECDS is more than 2.5 kHz, as same as the single-coil probe ECSP. The bandwidth is 30 times the max rotation speed of the MSFW which is 83.3 Hz (5,000 rpm), so the dynamic response of the dual-coil ECDS could satisfy the requirements of the APH-MSFW.


A wide linear range Eddy Current Displacement Sensor equipped with dual-coil probe applied in the Magnetic Suspension Flywheel.

Fang J, Wen T - Sensors (Basel) (2012)

The rotor displacement locus measured by the designed dual-coil ECDS in α and β DOFs when the rotor rotates at 5,000 rpm.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3472851&req=5

f15-sensors-12-10693: The rotor displacement locus measured by the designed dual-coil ECDS in α and β DOFs when the rotor rotates at 5,000 rpm.
Mentions: Shown in Figure 15 is the rotor locus of the APH-MSFW in α and β DOFs when the rotor is rotating at 5,000 rpm. The testing results show that the dual-probe ECDS could ensure the MSFW operating in its rotating speed range ±5,000 rpm. The bandwidth of the dual-coil ECDS is more than 2.5 kHz, as same as the single-coil probe ECSP. The bandwidth is 30 times the max rotation speed of the MSFW which is 83.3 Hz (5,000 rpm), so the dynamic response of the dual-coil ECDS could satisfy the requirements of the APH-MSFW.

Bottom Line: The Eddy Current Displacement Sensor (ECDS) is widely used in the Magnetic Suspension Flywheel (MSFW) to measure the tiny clearance between the rotor and the magnetic bearings.Wide clearances must be measured in some new MSFWs recently designed for the different space missions, but the coil diameter is limited by some restrictions.The effectiveness of the linear range extension ability and the dynamic response of the designed ECDS are confirmed by the testing and the applications in the MSFW.

View Article: PubMed Central - PubMed

Affiliation: Science and Technology on Inertial Laboratory, School of Instrumentation Science and Opto-Electronics Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China. fangjiancheng@buaa.edu.cn

ABSTRACT
The Eddy Current Displacement Sensor (ECDS) is widely used in the Magnetic Suspension Flywheel (MSFW) to measure the tiny clearance between the rotor and the magnetic bearings. The linear range of the ECDS is determined by the diameter of its probe coil. Wide clearances must be measured in some new MSFWs recently designed for the different space missions, but the coil diameter is limited by some restrictions. In this paper, a multi-channel ECDS equipped with dual-coil probes is proposed to extend the linear range to satisfy the demands of such MSFWs. In order to determine the best configuration of the dual-coil probe, the quality factors of the potential types of the dual-coil probes, the induced eddy current and the magnetic intensity on the surface of the measuring object are compared with those of the conventional single-coil probe. The linear range of the ECDS equipped with the selected dual-coil probe is extended from 1.1 mm to 2.4 mm under the restrictions without adding any cost for additional compensation circuits or expensive coil materials. The effectiveness of the linear range extension ability and the dynamic response of the designed ECDS are confirmed by the testing and the applications in the MSFW.

No MeSH data available.


Related in: MedlinePlus