Limits...
A synchronous multi-body sensor platform in a Wireless Body Sensor Network: design and implementation.

Gil Y, Wu W, Lee J - Sensors (Basel) (2012)

Bottom Line: Next, we designed and implemented a lightweight, ultra-compact, low cost, low power-consumption Printed Circuit Board.A synchronous multi-body sensor platform is expected to be very useful in telemedicine and emergency rescue scenarios.Furthermore, this system is expected to be able to analyze the mutual effects among body signals.

View Article: PubMed Central - PubMed

Affiliation: Graduate School of Computer Science and Engineering, Pusan National University, Pusan 609-735, Korea. kyzoon@pusan.ac.kr

ABSTRACT

Background: Human life can be further improved if diseases and disorders can be predicted before they become dangerous, by correctly recognizing signals from the human body, so in order to make disease detection more precise, various body-signals need to be measured simultaneously in a synchronized manner.

Object: This research aims at developing an integrated system for measuring four signals (EEG, ECG, respiration, and PPG) and simultaneously producing synchronous signals on a Wireless Body Sensor Network.

Design: We designed and implemented a platform for multiple bio-signals using Bluetooth communication.

Results: First, we developed a prototype board and verified the signals from the sensor platform using frequency responses and quantities. Next, we designed and implemented a lightweight, ultra-compact, low cost, low power-consumption Printed Circuit Board.

Conclusion: A synchronous multi-body sensor platform is expected to be very useful in telemedicine and emergency rescue scenarios. Furthermore, this system is expected to be able to analyze the mutual effects among body signals.

Show MeSH

Related in: MedlinePlus

View of three type sensor platform for power consumption checking: (a) 8 channels EEG sensor platform using Zigbee communication; (b) Previous four channel multi-body sensor platform using Bluetooth communication; (c) Enhanced four channel multi-body sensor platform using Bluetooth communication.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3472833&req=5

f8-sensors-12-10381: View of three type sensor platform for power consumption checking: (a) 8 channels EEG sensor platform using Zigbee communication; (b) Previous four channel multi-body sensor platform using Bluetooth communication; (c) Enhanced four channel multi-body sensor platform using Bluetooth communication.

Mentions: The Figure 8(a) depicts the eight channel portable EEG sensor platform based on the 8051 core using Zibee communication (IEEE 802.15.4) built in 2009. Figure 8(b) depicts a four channel multi body sensor platform for measurement of EEG, ECG, Respiration and PPG using Bluetooth communication (IEEE 802.15.1). Finally, The Figure 8(c) is the four channel multi body sensor platform implanted with an enhanced design for the analog circuit using Bluetooth communication. The power consumption of each sensor platform was measured using a 9 V commercial battery.


A synchronous multi-body sensor platform in a Wireless Body Sensor Network: design and implementation.

Gil Y, Wu W, Lee J - Sensors (Basel) (2012)

View of three type sensor platform for power consumption checking: (a) 8 channels EEG sensor platform using Zigbee communication; (b) Previous four channel multi-body sensor platform using Bluetooth communication; (c) Enhanced four channel multi-body sensor platform using Bluetooth communication.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3472833&req=5

f8-sensors-12-10381: View of three type sensor platform for power consumption checking: (a) 8 channels EEG sensor platform using Zigbee communication; (b) Previous four channel multi-body sensor platform using Bluetooth communication; (c) Enhanced four channel multi-body sensor platform using Bluetooth communication.
Mentions: The Figure 8(a) depicts the eight channel portable EEG sensor platform based on the 8051 core using Zibee communication (IEEE 802.15.4) built in 2009. Figure 8(b) depicts a four channel multi body sensor platform for measurement of EEG, ECG, Respiration and PPG using Bluetooth communication (IEEE 802.15.1). Finally, The Figure 8(c) is the four channel multi body sensor platform implanted with an enhanced design for the analog circuit using Bluetooth communication. The power consumption of each sensor platform was measured using a 9 V commercial battery.

Bottom Line: Next, we designed and implemented a lightweight, ultra-compact, low cost, low power-consumption Printed Circuit Board.A synchronous multi-body sensor platform is expected to be very useful in telemedicine and emergency rescue scenarios.Furthermore, this system is expected to be able to analyze the mutual effects among body signals.

View Article: PubMed Central - PubMed

Affiliation: Graduate School of Computer Science and Engineering, Pusan National University, Pusan 609-735, Korea. kyzoon@pusan.ac.kr

ABSTRACT

Background: Human life can be further improved if diseases and disorders can be predicted before they become dangerous, by correctly recognizing signals from the human body, so in order to make disease detection more precise, various body-signals need to be measured simultaneously in a synchronized manner.

Object: This research aims at developing an integrated system for measuring four signals (EEG, ECG, respiration, and PPG) and simultaneously producing synchronous signals on a Wireless Body Sensor Network.

Design: We designed and implemented a platform for multiple bio-signals using Bluetooth communication.

Results: First, we developed a prototype board and verified the signals from the sensor platform using frequency responses and quantities. Next, we designed and implemented a lightweight, ultra-compact, low cost, low power-consumption Printed Circuit Board.

Conclusion: A synchronous multi-body sensor platform is expected to be very useful in telemedicine and emergency rescue scenarios. Furthermore, this system is expected to be able to analyze the mutual effects among body signals.

Show MeSH
Related in: MedlinePlus