Limits...
A multi-parameter decoupling method with a Lamb wave sensor for improving the selectivity of label-free liquid detection.

Zhou L, Wu Y, Xuan M, Manceau JF, Bastien F - Sensors (Basel) (2012)

Bottom Line: We found they can play very different roles in the detections.Here, the A(0) mode is used to identify the density of the detected liquid and with this density value we obtained the viscosity by the amplitude shifts of the S(0) mode.This could be a way to distinguish an unknown liquid with high sensitivity or to solve the problem of selectivity of label-free detection on biosensors.

View Article: PubMed Central - PubMed

Affiliation: Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China. zhoulq@sibet.ac.cn

ABSTRACT
In this paper, a liquid multi-parameter decoupling method with only one Lamb wave sensor is presented. In a Lamb wave sensor, antisymmetric modes (A(01) mode for low frequency, A(03) mode for high frequency) and symmetric modes (S(0) mode) are used to detect multiple parameters of a liquid, such as its density, sound velocity, and viscosity. We found they can play very different roles in the detections. For example, the A(01) mode is very sensitive to the liquid's density but the A(03) mode is sensitive to the sound velocity. Here, the A(0) mode is used to identify the density of the detected liquid and with this density value we obtained the viscosity by the amplitude shifts of the S(0) mode. This could be a way to distinguish an unknown liquid with high sensitivity or to solve the problem of selectivity of label-free detection on biosensors.

Show MeSH

Related in: MedlinePlus

Amplitude shifts versus (density × viscosity)0.5 for the NaCl and NaBr solutions in the S0 mode.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3472832&req=5

f6-sensors-12-10369: Amplitude shifts versus (density × viscosity)0.5 for the NaCl and NaBr solutions in the S0 mode.

Mentions: The item (density × viscosity)0.5 changes almost linearly with the item of amplitude shifts (ΔAdB), and the linear fitting coefficient is about 1.02 ± 0.09 (dB/(kg·m−2·s−0.5)), such as the NaBr and NaCl solutions (Figure 6). Beside the density and the viscosity, other parameters, such as the liquid's conductivity, affect the amplitude shifts. This is maybe the reason why the high linearity of (density × viscosity)0.5 doesn't change with the amplitude shift. However, by analyzing the amplitude shifts (ΔAdB) of the S0 mode, the viscosity of the solution can be derived. With the determined density by measuring the frequency response of the A01 and A03 modes, the viscosity will be determined by checking the amplitude response in the S0 mode.


A multi-parameter decoupling method with a Lamb wave sensor for improving the selectivity of label-free liquid detection.

Zhou L, Wu Y, Xuan M, Manceau JF, Bastien F - Sensors (Basel) (2012)

Amplitude shifts versus (density × viscosity)0.5 for the NaCl and NaBr solutions in the S0 mode.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3472832&req=5

f6-sensors-12-10369: Amplitude shifts versus (density × viscosity)0.5 for the NaCl and NaBr solutions in the S0 mode.
Mentions: The item (density × viscosity)0.5 changes almost linearly with the item of amplitude shifts (ΔAdB), and the linear fitting coefficient is about 1.02 ± 0.09 (dB/(kg·m−2·s−0.5)), such as the NaBr and NaCl solutions (Figure 6). Beside the density and the viscosity, other parameters, such as the liquid's conductivity, affect the amplitude shifts. This is maybe the reason why the high linearity of (density × viscosity)0.5 doesn't change with the amplitude shift. However, by analyzing the amplitude shifts (ΔAdB) of the S0 mode, the viscosity of the solution can be derived. With the determined density by measuring the frequency response of the A01 and A03 modes, the viscosity will be determined by checking the amplitude response in the S0 mode.

Bottom Line: We found they can play very different roles in the detections.Here, the A(0) mode is used to identify the density of the detected liquid and with this density value we obtained the viscosity by the amplitude shifts of the S(0) mode.This could be a way to distinguish an unknown liquid with high sensitivity or to solve the problem of selectivity of label-free detection on biosensors.

View Article: PubMed Central - PubMed

Affiliation: Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China. zhoulq@sibet.ac.cn

ABSTRACT
In this paper, a liquid multi-parameter decoupling method with only one Lamb wave sensor is presented. In a Lamb wave sensor, antisymmetric modes (A(01) mode for low frequency, A(03) mode for high frequency) and symmetric modes (S(0) mode) are used to detect multiple parameters of a liquid, such as its density, sound velocity, and viscosity. We found they can play very different roles in the detections. For example, the A(01) mode is very sensitive to the liquid's density but the A(03) mode is sensitive to the sound velocity. Here, the A(0) mode is used to identify the density of the detected liquid and with this density value we obtained the viscosity by the amplitude shifts of the S(0) mode. This could be a way to distinguish an unknown liquid with high sensitivity or to solve the problem of selectivity of label-free detection on biosensors.

Show MeSH
Related in: MedlinePlus