Limits...
Grey level and noise evaluation of a Foveon X3 image sensor: a statistical and experimental approach.

Riutort-Mayol G, Marqués-Mateu A, Seguí AE, Lerma JL - Sensors (Basel) (2012)

Bottom Line: A practical, comprehensive and flexible procedure to analyze the radiometric values and the uncertainty effects due to the camera sensor system is described in this paper.The presented linear model integrates all the individual sensor noise sources in one global component and characterizes the radiometric values and the uncertainty effects according to the influential factors such as the scene reflectance, wavelength range and time.It is confirmed the flexibility of the procedure to model and characterize the radiometric values, as well as to determine the behaviour of two phenomena when dealing with image sensors: the noise of a single image and the stability (trend and noise) of a sequence of images.

View Article: PubMed Central - PubMed

Affiliation: Department of Cartographic Engineering, Geodesy and Photogrammetry, Universitat Politècnica de València, Valencia 46022, Spain. gabriuma@upv.es

ABSTRACT
Radiometric values on digital imagery are affected by several sources of uncertainty. A practical, comprehensive and flexible procedure to analyze the radiometric values and the uncertainty effects due to the camera sensor system is described in this paper. The procedure is performed on the grey level output signal using image raw units with digital numbers ranging from 0 to 2(12)-1. The procedure is entirely based on statistical and experimental techniques. Design of Experiments (DoE) for Linear Models (LM) are derived to analyze the radiometric values and estimate the uncertainty. The presented linear model integrates all the individual sensor noise sources in one global component and characterizes the radiometric values and the uncertainty effects according to the influential factors such as the scene reflectance, wavelength range and time. The experiments are carried out under laboratory conditions to minimize the rest of uncertainty sources that might affect the radiometric values. It is confirmed the flexibility of the procedure to model and characterize the radiometric values, as well as to determine the behaviour of two phenomena when dealing with image sensors: the noise of a single image and the stability (trend and noise) of a sequence of images.

No MeSH data available.


Related in: MedlinePlus

Scheme of the approach developed in this paper to analyze the radiometric values (grey level values), the sensor noise of a single image, the sensor noise of a sequence of images and the sensor temporal trend of a sequence of images.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3472831&req=5

f14-sensors-12-10339: Scheme of the approach developed in this paper to analyze the radiometric values (grey level values), the sensor noise of a single image, the sensor noise of a sequence of images and the sensor temporal trend of a sequence of images.

Mentions: The theoretical and experimental approach developed to analyze the radiometric values, the noise of a single image and the noise and trend of a temporal sequence of images consists of four steps. The procedure is depicted in Scheme 1 and allows us to establish the sequence of steps followed to evaluate the sensor.


Grey level and noise evaluation of a Foveon X3 image sensor: a statistical and experimental approach.

Riutort-Mayol G, Marqués-Mateu A, Seguí AE, Lerma JL - Sensors (Basel) (2012)

Scheme of the approach developed in this paper to analyze the radiometric values (grey level values), the sensor noise of a single image, the sensor noise of a sequence of images and the sensor temporal trend of a sequence of images.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3472831&req=5

f14-sensors-12-10339: Scheme of the approach developed in this paper to analyze the radiometric values (grey level values), the sensor noise of a single image, the sensor noise of a sequence of images and the sensor temporal trend of a sequence of images.
Mentions: The theoretical and experimental approach developed to analyze the radiometric values, the noise of a single image and the noise and trend of a temporal sequence of images consists of four steps. The procedure is depicted in Scheme 1 and allows us to establish the sequence of steps followed to evaluate the sensor.

Bottom Line: A practical, comprehensive and flexible procedure to analyze the radiometric values and the uncertainty effects due to the camera sensor system is described in this paper.The presented linear model integrates all the individual sensor noise sources in one global component and characterizes the radiometric values and the uncertainty effects according to the influential factors such as the scene reflectance, wavelength range and time.It is confirmed the flexibility of the procedure to model and characterize the radiometric values, as well as to determine the behaviour of two phenomena when dealing with image sensors: the noise of a single image and the stability (trend and noise) of a sequence of images.

View Article: PubMed Central - PubMed

Affiliation: Department of Cartographic Engineering, Geodesy and Photogrammetry, Universitat Politècnica de València, Valencia 46022, Spain. gabriuma@upv.es

ABSTRACT
Radiometric values on digital imagery are affected by several sources of uncertainty. A practical, comprehensive and flexible procedure to analyze the radiometric values and the uncertainty effects due to the camera sensor system is described in this paper. The procedure is performed on the grey level output signal using image raw units with digital numbers ranging from 0 to 2(12)-1. The procedure is entirely based on statistical and experimental techniques. Design of Experiments (DoE) for Linear Models (LM) are derived to analyze the radiometric values and estimate the uncertainty. The presented linear model integrates all the individual sensor noise sources in one global component and characterizes the radiometric values and the uncertainty effects according to the influential factors such as the scene reflectance, wavelength range and time. The experiments are carried out under laboratory conditions to minimize the rest of uncertainty sources that might affect the radiometric values. It is confirmed the flexibility of the procedure to model and characterize the radiometric values, as well as to determine the behaviour of two phenomena when dealing with image sensors: the noise of a single image and the stability (trend and noise) of a sequence of images.

No MeSH data available.


Related in: MedlinePlus