Limits...
Research on a novel low modulus OFBG strain sensor for pavement monitoring.

Wang C, Hu Q, Lu Q - Sensors (Basel) (2012)

Bottom Line: PP with MA-G-PP is used to package OFBG.The fabrication techniques, the physical properties and the sensing properties were tested.The experimental results show that this kind of new OFBG strain sensor is a wonderful sensor with low modulus (about 1 GPa) and good sensitivity, which would meet the needs for monitoring some low modulus materials or structures.

View Article: PubMed Central - PubMed

Affiliation: School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China. wangchuan@hit.edu.cn

ABSTRACT
Because of the fatigue and deflection damage of asphalt pavement, it is very important for researchers to monitor the strain response of asphalt layers in service under vehicle loads, so in this paper a novel polypropylene based OFBG (Optical Fiber Bragg Gratings) strain sensor with low modulus and large strain sensing scale was designed and fabricated. PP with MA-G-PP is used to package OFBG. The fabrication techniques, the physical properties and the sensing properties were tested. The experimental results show that this kind of new OFBG strain sensor is a wonderful sensor with low modulus (about 1 GPa) and good sensitivity, which would meet the needs for monitoring some low modulus materials or structures.

No MeSH data available.


Related in: MedlinePlus

Temperature-time relationship of OFBG.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3472812&req=5

f8-sensors-12-10001: Temperature-time relationship of OFBG.

Mentions: The temperature-time relationship of OFBG is shown in Figure 8. The extrusion temperature of PP was originally set at about 220 °C. After PP went inside the mould and reached the OFBG position, the temperature of PP became 152.57 °C and continued descending. This would increase the viscosity of PP and hence, the viscous force increases accordingly. Figure 9 shows the strain changes of the OFBG, and from which it can be seen that the shrinkage of PP is very large. By hardening for 50 minutes, the inner strain reached −12,000 με. Three days later, the wavelength was stable at about 1,524,320 nm, and the inner strain change was about −13,060 με, which truly reflected the shrinkage of PP. Because of the high ultimate strain of PP, this sensor maybe suitable to monitor large scale tensile strains.


Research on a novel low modulus OFBG strain sensor for pavement monitoring.

Wang C, Hu Q, Lu Q - Sensors (Basel) (2012)

Temperature-time relationship of OFBG.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3472812&req=5

f8-sensors-12-10001: Temperature-time relationship of OFBG.
Mentions: The temperature-time relationship of OFBG is shown in Figure 8. The extrusion temperature of PP was originally set at about 220 °C. After PP went inside the mould and reached the OFBG position, the temperature of PP became 152.57 °C and continued descending. This would increase the viscosity of PP and hence, the viscous force increases accordingly. Figure 9 shows the strain changes of the OFBG, and from which it can be seen that the shrinkage of PP is very large. By hardening for 50 minutes, the inner strain reached −12,000 με. Three days later, the wavelength was stable at about 1,524,320 nm, and the inner strain change was about −13,060 με, which truly reflected the shrinkage of PP. Because of the high ultimate strain of PP, this sensor maybe suitable to monitor large scale tensile strains.

Bottom Line: PP with MA-G-PP is used to package OFBG.The fabrication techniques, the physical properties and the sensing properties were tested.The experimental results show that this kind of new OFBG strain sensor is a wonderful sensor with low modulus (about 1 GPa) and good sensitivity, which would meet the needs for monitoring some low modulus materials or structures.

View Article: PubMed Central - PubMed

Affiliation: School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China. wangchuan@hit.edu.cn

ABSTRACT
Because of the fatigue and deflection damage of asphalt pavement, it is very important for researchers to monitor the strain response of asphalt layers in service under vehicle loads, so in this paper a novel polypropylene based OFBG (Optical Fiber Bragg Gratings) strain sensor with low modulus and large strain sensing scale was designed and fabricated. PP with MA-G-PP is used to package OFBG. The fabrication techniques, the physical properties and the sensing properties were tested. The experimental results show that this kind of new OFBG strain sensor is a wonderful sensor with low modulus (about 1 GPa) and good sensitivity, which would meet the needs for monitoring some low modulus materials or structures.

No MeSH data available.


Related in: MedlinePlus