Limits...
Research on a novel low modulus OFBG strain sensor for pavement monitoring.

Wang C, Hu Q, Lu Q - Sensors (Basel) (2012)

Bottom Line: PP with MA-G-PP is used to package OFBG.The fabrication techniques, the physical properties and the sensing properties were tested.The experimental results show that this kind of new OFBG strain sensor is a wonderful sensor with low modulus (about 1 GPa) and good sensitivity, which would meet the needs for monitoring some low modulus materials or structures.

View Article: PubMed Central - PubMed

Affiliation: School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China. wangchuan@hit.edu.cn

ABSTRACT
Because of the fatigue and deflection damage of asphalt pavement, it is very important for researchers to monitor the strain response of asphalt layers in service under vehicle loads, so in this paper a novel polypropylene based OFBG (Optical Fiber Bragg Gratings) strain sensor with low modulus and large strain sensing scale was designed and fabricated. PP with MA-G-PP is used to package OFBG. The fabrication techniques, the physical properties and the sensing properties were tested. The experimental results show that this kind of new OFBG strain sensor is a wonderful sensor with low modulus (about 1 GPa) and good sensitivity, which would meet the needs for monitoring some low modulus materials or structures.

No MeSH data available.


Related in: MedlinePlus

Variation of apparent viscosity of PP. matrix (5%) with shear rate.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3472812&req=5

f2-sensors-12-10001: Variation of apparent viscosity of PP. matrix (5%) with shear rate.

Mentions: It can be seen in Figure 2 that melted PP with different contents of MA-G-PP is a typical non-Newtonian fluid, and the viscosity decreases as the shear rate ascends. Concerning both the rheology behavior and the mechanical performance, the PP with 5% content of MA-G-PP was chosen as the proper matrix in this research to package the bare OFBG.


Research on a novel low modulus OFBG strain sensor for pavement monitoring.

Wang C, Hu Q, Lu Q - Sensors (Basel) (2012)

Variation of apparent viscosity of PP. matrix (5%) with shear rate.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3472812&req=5

f2-sensors-12-10001: Variation of apparent viscosity of PP. matrix (5%) with shear rate.
Mentions: It can be seen in Figure 2 that melted PP with different contents of MA-G-PP is a typical non-Newtonian fluid, and the viscosity decreases as the shear rate ascends. Concerning both the rheology behavior and the mechanical performance, the PP with 5% content of MA-G-PP was chosen as the proper matrix in this research to package the bare OFBG.

Bottom Line: PP with MA-G-PP is used to package OFBG.The fabrication techniques, the physical properties and the sensing properties were tested.The experimental results show that this kind of new OFBG strain sensor is a wonderful sensor with low modulus (about 1 GPa) and good sensitivity, which would meet the needs for monitoring some low modulus materials or structures.

View Article: PubMed Central - PubMed

Affiliation: School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China. wangchuan@hit.edu.cn

ABSTRACT
Because of the fatigue and deflection damage of asphalt pavement, it is very important for researchers to monitor the strain response of asphalt layers in service under vehicle loads, so in this paper a novel polypropylene based OFBG (Optical Fiber Bragg Gratings) strain sensor with low modulus and large strain sensing scale was designed and fabricated. PP with MA-G-PP is used to package OFBG. The fabrication techniques, the physical properties and the sensing properties were tested. The experimental results show that this kind of new OFBG strain sensor is a wonderful sensor with low modulus (about 1 GPa) and good sensitivity, which would meet the needs for monitoring some low modulus materials or structures.

No MeSH data available.


Related in: MedlinePlus