Limits...
Room temperature radiolytic synthesized Cu@CuAlO(2)-Al(2)O(3) nanoparticles.

Abedini A, Saion E, Larki F, Zakaria A, Noroozi M, Soltani N - Int J Mol Sci (2012)

Bottom Line: Results of transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDX), and X-ray diffraction (XRD) showed that Cu@CuAlO(2)-Al(2)O(3) nanoparticles are in a core-shell structure.By controlling the absorbed dose and precursor concentration, nanoclusters with different particle sizes were obtained.The average particle diameter increased with increased precursor concentration and decreased with increased dose.

View Article: PubMed Central - PubMed

Affiliation: Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; E-Mails: elias@science.upm.edu.my (E.S.); farhad.larki@gmail.com (F.L.); azmizak@science.upm.edu.my (A.Z.); monir_noroozi@yahoo.com (M.N.); nayereh.soltani@gmail.com (N.S.).

ABSTRACT
Colloidal Cu@CuAlO(2)-Al(2)O(3) bimetallic nanoparticles were prepared by a gamma irradiation method in an aqueous system in the presence of polyvinyl pyrrolidone (PVP) and isopropanol respectively as a colloidal stabilizer and scavenger of hydrogen and hydroxyl radicals. The gamma irradiation was carried out in a (60)Co gamma source chamber with different doses up to 120 kGy. The formation of Cu@CuAlO(2)-Al(2)O(3) nanoparticles was observed initially by the change in color of the colloidal samples from colorless to brown. Fourier transform infrared spectroscopy (FTIR) confirmed the presence of bonds between polymer chains and the metal surface at all radiation doses. Results of transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDX), and X-ray diffraction (XRD) showed that Cu@CuAlO(2)-Al(2)O(3) nanoparticles are in a core-shell structure. By controlling the absorbed dose and precursor concentration, nanoclusters with different particle sizes were obtained. The average particle diameter increased with increased precursor concentration and decreased with increased dose. This is due to the competition between nucleation, growth, and aggregation processes in the formation of nanoclusters during irradiation.

Show MeSH
X-ray diffraction patterns of: (a) pure PVP, PVP-capped Cu@CuAlO2-Al2O3 nanoparticles at: (b) 80; (c) 100; and (d) 120 kGy radiation dose.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC3472785&req=5

f5-ijms-13-11941: X-ray diffraction patterns of: (a) pure PVP, PVP-capped Cu@CuAlO2-Al2O3 nanoparticles at: (b) 80; (c) 100; and (d) 120 kGy radiation dose.

Mentions: XRD patterns of pure PVP and PVP-capped Cu@CuAlO2-Al2O3 nanoparticles at various radiation doses are presented in Figure 5. In Figure 5b–d, diagrams exhibit reflections that could clearly be assigned to the typical face-centered cubic (fcc) Cu pattern, that increased by increasing dose. In addition, Al2O3 and CuAlO2 reflections were found in the samples. Low intensities of CuAlO2 and Al2O3 diffraction peaks are assumed to arise from the fact that Al clusters are thinly coated on the Cu nanoparticles. The oxidation form of Al may result in a slight inevitable surface oxidation during the process of PVP-capping, washing, or drying. This result is in good agreement with the EDX results of samples.


Room temperature radiolytic synthesized Cu@CuAlO(2)-Al(2)O(3) nanoparticles.

Abedini A, Saion E, Larki F, Zakaria A, Noroozi M, Soltani N - Int J Mol Sci (2012)

X-ray diffraction patterns of: (a) pure PVP, PVP-capped Cu@CuAlO2-Al2O3 nanoparticles at: (b) 80; (c) 100; and (d) 120 kGy radiation dose.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC3472785&req=5

f5-ijms-13-11941: X-ray diffraction patterns of: (a) pure PVP, PVP-capped Cu@CuAlO2-Al2O3 nanoparticles at: (b) 80; (c) 100; and (d) 120 kGy radiation dose.
Mentions: XRD patterns of pure PVP and PVP-capped Cu@CuAlO2-Al2O3 nanoparticles at various radiation doses are presented in Figure 5. In Figure 5b–d, diagrams exhibit reflections that could clearly be assigned to the typical face-centered cubic (fcc) Cu pattern, that increased by increasing dose. In addition, Al2O3 and CuAlO2 reflections were found in the samples. Low intensities of CuAlO2 and Al2O3 diffraction peaks are assumed to arise from the fact that Al clusters are thinly coated on the Cu nanoparticles. The oxidation form of Al may result in a slight inevitable surface oxidation during the process of PVP-capping, washing, or drying. This result is in good agreement with the EDX results of samples.

Bottom Line: Results of transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDX), and X-ray diffraction (XRD) showed that Cu@CuAlO(2)-Al(2)O(3) nanoparticles are in a core-shell structure.By controlling the absorbed dose and precursor concentration, nanoclusters with different particle sizes were obtained.The average particle diameter increased with increased precursor concentration and decreased with increased dose.

View Article: PubMed Central - PubMed

Affiliation: Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; E-Mails: elias@science.upm.edu.my (E.S.); farhad.larki@gmail.com (F.L.); azmizak@science.upm.edu.my (A.Z.); monir_noroozi@yahoo.com (M.N.); nayereh.soltani@gmail.com (N.S.).

ABSTRACT
Colloidal Cu@CuAlO(2)-Al(2)O(3) bimetallic nanoparticles were prepared by a gamma irradiation method in an aqueous system in the presence of polyvinyl pyrrolidone (PVP) and isopropanol respectively as a colloidal stabilizer and scavenger of hydrogen and hydroxyl radicals. The gamma irradiation was carried out in a (60)Co gamma source chamber with different doses up to 120 kGy. The formation of Cu@CuAlO(2)-Al(2)O(3) nanoparticles was observed initially by the change in color of the colloidal samples from colorless to brown. Fourier transform infrared spectroscopy (FTIR) confirmed the presence of bonds between polymer chains and the metal surface at all radiation doses. Results of transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDX), and X-ray diffraction (XRD) showed that Cu@CuAlO(2)-Al(2)O(3) nanoparticles are in a core-shell structure. By controlling the absorbed dose and precursor concentration, nanoclusters with different particle sizes were obtained. The average particle diameter increased with increased precursor concentration and decreased with increased dose. This is due to the competition between nucleation, growth, and aggregation processes in the formation of nanoclusters during irradiation.

Show MeSH