Limits...
Experimental aspects of colloidal interactions in mixed systems of liposome and inorganic nanoparticle and their applications.

Michel R, Gradzielski M - Int J Mol Sci (2012)

Bottom Line: Research on these systems has led to the observation of novel hybrid structures whose morphology strongly depends on the charge, composition and size of the interacting colloidal species as well as on the nature (pH, ionic strength) of their dispersing medium.A central role is played by the phase behaviour of phospholipid bilayers which have a tremendous influence on the liposome properties.Another central aspect is the incorporation of nanoparticles into vesicles, which is intimately linked to the conditions required for transporting a nanoparticle through a membrane.

View Article: PubMed Central - PubMed

Affiliation: Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Berlin D-10623, Germany; E-Mails: raphael.michel@mailbox.tu-berlin.de (R.M.); michael.gradzielski@tu-berlin.de (M.G.); Tel.: +49-30-314-22822 (R.M.); +49-30-314-24934 (M.G.); M.G.).

ABSTRACT
In the past few years, growing attention has been devoted to the study of the interactions taking place in mixed systems of phospholipid membranes (for instance in the form of vesicles) and hard nanoparticles (NPs). In this context liposomes (vesicles) may serve as versatile carriers or as a model system for biological membranes. Research on these systems has led to the observation of novel hybrid structures whose morphology strongly depends on the charge, composition and size of the interacting colloidal species as well as on the nature (pH, ionic strength) of their dispersing medium. A central role is played by the phase behaviour of phospholipid bilayers which have a tremendous influence on the liposome properties. Another central aspect is the incorporation of nanoparticles into vesicles, which is intimately linked to the conditions required for transporting a nanoparticle through a membrane. Herein, we review recent progress made on the investigations of the interactions in liposome/nanoparticle systems focusing on the particularly interesting structures that are formed in these hybrid systems as well as their potential applications.

Show MeSH

Related in: MedlinePlus

Schematic drawings of the interdigitation of the outer and inner leaflet of a phospholipid bilayer supported on a small nanoparticle.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC3472766&req=5

f3-ijms-13-11610: Schematic drawings of the interdigitation of the outer and inner leaflet of a phospholipid bilayer supported on a small nanoparticle.

Mentions: Interestingly, supported lipid bilayers adsorbed on small particles (RC < 100 nm) exhibit morphology changes due to the high curvature they experience. Shifts of the Tm value [102] as well as a broadening and/or splitting of the transition peak obtained by differential scanning calorimetry (DSC) [102,103] suggest a curvature-dependent decoupling between the inner and outer leaflet of the bilayer as has also been observed in the case of small SUVs [104,105]. In extreme cases (RP ≤ 10 nm) the high curvature induces the creation of a large free volume between the acyl-chains of the supported bilayer [102,106] (Figure 3, left). In this case, interdigitation of the acyl-chains occurs in order to optimize hydrophobic interaction while avoiding the exposure of hydrophobic chains to an aqueous environment (Figure 3, right) [107].


Experimental aspects of colloidal interactions in mixed systems of liposome and inorganic nanoparticle and their applications.

Michel R, Gradzielski M - Int J Mol Sci (2012)

Schematic drawings of the interdigitation of the outer and inner leaflet of a phospholipid bilayer supported on a small nanoparticle.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC3472766&req=5

f3-ijms-13-11610: Schematic drawings of the interdigitation of the outer and inner leaflet of a phospholipid bilayer supported on a small nanoparticle.
Mentions: Interestingly, supported lipid bilayers adsorbed on small particles (RC < 100 nm) exhibit morphology changes due to the high curvature they experience. Shifts of the Tm value [102] as well as a broadening and/or splitting of the transition peak obtained by differential scanning calorimetry (DSC) [102,103] suggest a curvature-dependent decoupling between the inner and outer leaflet of the bilayer as has also been observed in the case of small SUVs [104,105]. In extreme cases (RP ≤ 10 nm) the high curvature induces the creation of a large free volume between the acyl-chains of the supported bilayer [102,106] (Figure 3, left). In this case, interdigitation of the acyl-chains occurs in order to optimize hydrophobic interaction while avoiding the exposure of hydrophobic chains to an aqueous environment (Figure 3, right) [107].

Bottom Line: Research on these systems has led to the observation of novel hybrid structures whose morphology strongly depends on the charge, composition and size of the interacting colloidal species as well as on the nature (pH, ionic strength) of their dispersing medium.A central role is played by the phase behaviour of phospholipid bilayers which have a tremendous influence on the liposome properties.Another central aspect is the incorporation of nanoparticles into vesicles, which is intimately linked to the conditions required for transporting a nanoparticle through a membrane.

View Article: PubMed Central - PubMed

Affiliation: Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Berlin D-10623, Germany; E-Mails: raphael.michel@mailbox.tu-berlin.de (R.M.); michael.gradzielski@tu-berlin.de (M.G.); Tel.: +49-30-314-22822 (R.M.); +49-30-314-24934 (M.G.); M.G.).

ABSTRACT
In the past few years, growing attention has been devoted to the study of the interactions taking place in mixed systems of phospholipid membranes (for instance in the form of vesicles) and hard nanoparticles (NPs). In this context liposomes (vesicles) may serve as versatile carriers or as a model system for biological membranes. Research on these systems has led to the observation of novel hybrid structures whose morphology strongly depends on the charge, composition and size of the interacting colloidal species as well as on the nature (pH, ionic strength) of their dispersing medium. A central role is played by the phase behaviour of phospholipid bilayers which have a tremendous influence on the liposome properties. Another central aspect is the incorporation of nanoparticles into vesicles, which is intimately linked to the conditions required for transporting a nanoparticle through a membrane. Herein, we review recent progress made on the investigations of the interactions in liposome/nanoparticle systems focusing on the particularly interesting structures that are formed in these hybrid systems as well as their potential applications.

Show MeSH
Related in: MedlinePlus