Limits...
Combining the physical adsorption approach and the covalent attachment method to prepare a bifunctional bioreactor.

Dong M, Wu Z, Lu M, Wang Z, Li Z - Int J Mol Sci (2012)

Bottom Line: The property of amino-functionalized mesoporous silica was characterized by N(2) adsorption-desorption and thermogravimetric (TG) analysis.With Micrococus lysodeilicus as the substrate, the antibacterial activity of covalently tethered lysozyme was measured.Results demonstrated that the final product not only presented peroxidase activity of the myoglobin but yielded antibacterial activity of the lysozyme.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University, Changchun 130012, China; E-Mails: dong.meng.xing@163.com (M.D.); wuzf06@mails.jlu.edu.cn (Z.W.); luming@jlu.edu.cn (M.L.); wangzhi@jlu.edu.cn (Z.W.).

ABSTRACT
Aminopropyl-functionalized SBA-15 mesoporous silica was used as a support to adsorb myoglobin. Then, in order to avoid the leakage of adsorbed myoglobin, lysozyme was covalently tethered to the internal and external surface of the mesoporous silica with glutaraldehyde as the coupling agent. The property of amino-functionalized mesoporous silica was characterized by N(2) adsorption-desorption and thermogravimetric (TG) analysis. The feature of the silica-based matrix before and after myoglobin adsorption was identified by fourier transform infrared (FTIR) and UV/VIS measurement. With o-dianisidine and H(2)O(2) as the substrate, the peroxidase activity of adsorbed myoglobin was determined. With Micrococus lysodeilicus as the substrate, the antibacterial activity of covalently tethered lysozyme was measured. Results demonstrated that the final product not only presented peroxidase activity of the myoglobin but yielded antibacterial activity of the lysozyme.

Show MeSH

Related in: MedlinePlus

Antibacterial assay of sample: (1) amino-functionalized mesoporous silica adsorbed myoglobin; (2–7) the supernatant obtained from washing the final immobilized enzyme over four times; (8) the final immobilized enzyme.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC3472756&req=5

f7-ijms-13-11443: Antibacterial assay of sample: (1) amino-functionalized mesoporous silica adsorbed myoglobin; (2–7) the supernatant obtained from washing the final immobilized enzyme over four times; (8) the final immobilized enzyme.

Mentions: The antibacterial activity of immobilized lysozyme was determined. As shown in Figure 7, there was no antibacterial circle for sample No. 1, suggesting that amino-functionalized mesoporous silica adsorbed myoglobin had no antibacterial activity. After the lysozyme was covalently linked to the amino-functionalized mesoporous silica, the immobilized enzyme was washed with buffer and the antibacterial activity of the washing supernatant was detected. No activity of lysozyme could be found in the supernatant after washing over four times, suggesting that the free or adsorbed lysozyme was totally removed. The bacteriostatic circle of the final immobilized enzyme (sample No. 8) clearly verified that covalently tethered lysozyme still possessed antibacterial activity (Figure 7).


Combining the physical adsorption approach and the covalent attachment method to prepare a bifunctional bioreactor.

Dong M, Wu Z, Lu M, Wang Z, Li Z - Int J Mol Sci (2012)

Antibacterial assay of sample: (1) amino-functionalized mesoporous silica adsorbed myoglobin; (2–7) the supernatant obtained from washing the final immobilized enzyme over four times; (8) the final immobilized enzyme.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC3472756&req=5

f7-ijms-13-11443: Antibacterial assay of sample: (1) amino-functionalized mesoporous silica adsorbed myoglobin; (2–7) the supernatant obtained from washing the final immobilized enzyme over four times; (8) the final immobilized enzyme.
Mentions: The antibacterial activity of immobilized lysozyme was determined. As shown in Figure 7, there was no antibacterial circle for sample No. 1, suggesting that amino-functionalized mesoporous silica adsorbed myoglobin had no antibacterial activity. After the lysozyme was covalently linked to the amino-functionalized mesoporous silica, the immobilized enzyme was washed with buffer and the antibacterial activity of the washing supernatant was detected. No activity of lysozyme could be found in the supernatant after washing over four times, suggesting that the free or adsorbed lysozyme was totally removed. The bacteriostatic circle of the final immobilized enzyme (sample No. 8) clearly verified that covalently tethered lysozyme still possessed antibacterial activity (Figure 7).

Bottom Line: The property of amino-functionalized mesoporous silica was characterized by N(2) adsorption-desorption and thermogravimetric (TG) analysis.With Micrococus lysodeilicus as the substrate, the antibacterial activity of covalently tethered lysozyme was measured.Results demonstrated that the final product not only presented peroxidase activity of the myoglobin but yielded antibacterial activity of the lysozyme.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University, Changchun 130012, China; E-Mails: dong.meng.xing@163.com (M.D.); wuzf06@mails.jlu.edu.cn (Z.W.); luming@jlu.edu.cn (M.L.); wangzhi@jlu.edu.cn (Z.W.).

ABSTRACT
Aminopropyl-functionalized SBA-15 mesoporous silica was used as a support to adsorb myoglobin. Then, in order to avoid the leakage of adsorbed myoglobin, lysozyme was covalently tethered to the internal and external surface of the mesoporous silica with glutaraldehyde as the coupling agent. The property of amino-functionalized mesoporous silica was characterized by N(2) adsorption-desorption and thermogravimetric (TG) analysis. The feature of the silica-based matrix before and after myoglobin adsorption was identified by fourier transform infrared (FTIR) and UV/VIS measurement. With o-dianisidine and H(2)O(2) as the substrate, the peroxidase activity of adsorbed myoglobin was determined. With Micrococus lysodeilicus as the substrate, the antibacterial activity of covalently tethered lysozyme was measured. Results demonstrated that the final product not only presented peroxidase activity of the myoglobin but yielded antibacterial activity of the lysozyme.

Show MeSH
Related in: MedlinePlus