Limits...
Combining the physical adsorption approach and the covalent attachment method to prepare a bifunctional bioreactor.

Dong M, Wu Z, Lu M, Wang Z, Li Z - Int J Mol Sci (2012)

Bottom Line: The property of amino-functionalized mesoporous silica was characterized by N(2) adsorption-desorption and thermogravimetric (TG) analysis.With Micrococus lysodeilicus as the substrate, the antibacterial activity of covalently tethered lysozyme was measured.Results demonstrated that the final product not only presented peroxidase activity of the myoglobin but yielded antibacterial activity of the lysozyme.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University, Changchun 130012, China; E-Mails: dong.meng.xing@163.com (M.D.); wuzf06@mails.jlu.edu.cn (Z.W.); luming@jlu.edu.cn (M.L.); wangzhi@jlu.edu.cn (Z.W.).

ABSTRACT
Aminopropyl-functionalized SBA-15 mesoporous silica was used as a support to adsorb myoglobin. Then, in order to avoid the leakage of adsorbed myoglobin, lysozyme was covalently tethered to the internal and external surface of the mesoporous silica with glutaraldehyde as the coupling agent. The property of amino-functionalized mesoporous silica was characterized by N(2) adsorption-desorption and thermogravimetric (TG) analysis. The feature of the silica-based matrix before and after myoglobin adsorption was identified by fourier transform infrared (FTIR) and UV/VIS measurement. With o-dianisidine and H(2)O(2) as the substrate, the peroxidase activity of adsorbed myoglobin was determined. With Micrococus lysodeilicus as the substrate, the antibacterial activity of covalently tethered lysozyme was measured. Results demonstrated that the final product not only presented peroxidase activity of the myoglobin but yielded antibacterial activity of the lysozyme.

Show MeSH

Related in: MedlinePlus

UV/VIS (Ultraviolet–visible) spectroscopy of myoglobin adsorbed on aminofunctionalized mesoporous silica.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC3472756&req=5

f5-ijms-13-11443: UV/VIS (Ultraviolet–visible) spectroscopy of myoglobin adsorbed on aminofunctionalized mesoporous silica.

Mentions: In UV/VIS spectroscopy, the UV absorbance of amino-functionalized mesoporous silica acted as the baseline (Figure 5). The intensive peak at around 400 nm was assigned to the soret-band of porphyrin [24]. The two weak peaks at around 500 nm and one weak peak at 600 nm were assigned to the Q-band of porphyrin, respectively [25]. These peaks exhibited characteristic absorption of heme of myoglobin. The UV/VIS spectroscopy verified that myoglobin was successfully adsorbed into amino-functionalized mesoporous silica.


Combining the physical adsorption approach and the covalent attachment method to prepare a bifunctional bioreactor.

Dong M, Wu Z, Lu M, Wang Z, Li Z - Int J Mol Sci (2012)

UV/VIS (Ultraviolet–visible) spectroscopy of myoglobin adsorbed on aminofunctionalized mesoporous silica.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC3472756&req=5

f5-ijms-13-11443: UV/VIS (Ultraviolet–visible) spectroscopy of myoglobin adsorbed on aminofunctionalized mesoporous silica.
Mentions: In UV/VIS spectroscopy, the UV absorbance of amino-functionalized mesoporous silica acted as the baseline (Figure 5). The intensive peak at around 400 nm was assigned to the soret-band of porphyrin [24]. The two weak peaks at around 500 nm and one weak peak at 600 nm were assigned to the Q-band of porphyrin, respectively [25]. These peaks exhibited characteristic absorption of heme of myoglobin. The UV/VIS spectroscopy verified that myoglobin was successfully adsorbed into amino-functionalized mesoporous silica.

Bottom Line: The property of amino-functionalized mesoporous silica was characterized by N(2) adsorption-desorption and thermogravimetric (TG) analysis.With Micrococus lysodeilicus as the substrate, the antibacterial activity of covalently tethered lysozyme was measured.Results demonstrated that the final product not only presented peroxidase activity of the myoglobin but yielded antibacterial activity of the lysozyme.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University, Changchun 130012, China; E-Mails: dong.meng.xing@163.com (M.D.); wuzf06@mails.jlu.edu.cn (Z.W.); luming@jlu.edu.cn (M.L.); wangzhi@jlu.edu.cn (Z.W.).

ABSTRACT
Aminopropyl-functionalized SBA-15 mesoporous silica was used as a support to adsorb myoglobin. Then, in order to avoid the leakage of adsorbed myoglobin, lysozyme was covalently tethered to the internal and external surface of the mesoporous silica with glutaraldehyde as the coupling agent. The property of amino-functionalized mesoporous silica was characterized by N(2) adsorption-desorption and thermogravimetric (TG) analysis. The feature of the silica-based matrix before and after myoglobin adsorption was identified by fourier transform infrared (FTIR) and UV/VIS measurement. With o-dianisidine and H(2)O(2) as the substrate, the peroxidase activity of adsorbed myoglobin was determined. With Micrococus lysodeilicus as the substrate, the antibacterial activity of covalently tethered lysozyme was measured. Results demonstrated that the final product not only presented peroxidase activity of the myoglobin but yielded antibacterial activity of the lysozyme.

Show MeSH
Related in: MedlinePlus