Limits...
Molecular cloning and functional analysis of Three FLOWERING LOCUS T (FT) homologous genes from Chinese Cymbidium.

Huang W, Fang Z, Zeng S, Zhang J, Wu K, Chen Z, Teixeira da Silva JA, Duan J - Int J Mol Sci (2012)

Bottom Line: Alignment of the AA sequences revealed that CsFT, CgFT and CeFT contain a conserved domain, which is characteristic of the PEBP-RKIP superfamily, and which share high identity with FT of other plants in GenBank: 94% with OnFT from Oncidium Gower Ramsey, 79% with Hd3a from Oryza sativa, and 74% with FT from Arabidopsis thaliana. qRT-PCR analysis showed a diurnal expression pattern of CsFT, CgFT and CeFT following both long day (LD, 16-h light/8-h dark) and short day (SD, 8-h light/16-h dark) treatment.While the transcripts of both CsFT and CeFT under LD were significantly higher than under SD, those of CgFT were higher under SD.Our data indicates that CgFT is a putative phosphatidylethanolamine-binding protein gene in Cymbidium that may regulate the vegetative to reproductive transition in flowers, similar to its Arabidopsis ortholog.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of South China Agricultural Plant Genetics and Breeding, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou 510650, China; E-Mails: weitingpink@hotmail.com (W.H.); zmfang88@163.com (Z.F.); cymbidium1979@yahoo.com.cn (J.Z.); wu_kunlin@163.com (K.W.); duanj@scib.ac.cn (J.D.) ; Graduate University of the Chinese Academy of Sciences, Beijing 100049, China.

ABSTRACT
The FLOWERING LOCUS T (FT) gene plays crucial roles in regulating the transition from the vegetative to reproductive phase. To understand the molecular mechanism of reproduction, three homologous FT genes were isolated and characterized from Cymbidium sinense "Qi Jian Bai Mo", Cymbidium goeringii and Cymbidium ensifolium "Jin Si Ma Wei". The three genes contained 618-bp nucleotides with a 531-bp open reading frame (ORF) of encoding 176 amino acids (AAs). Alignment of the AA sequences revealed that CsFT, CgFT and CeFT contain a conserved domain, which is characteristic of the PEBP-RKIP superfamily, and which share high identity with FT of other plants in GenBank: 94% with OnFT from Oncidium Gower Ramsey, 79% with Hd3a from Oryza sativa, and 74% with FT from Arabidopsis thaliana. qRT-PCR analysis showed a diurnal expression pattern of CsFT, CgFT and CeFT following both long day (LD, 16-h light/8-h dark) and short day (SD, 8-h light/16-h dark) treatment. While the transcripts of both CsFT and CeFT under LD were significantly higher than under SD, those of CgFT were higher under SD. Ectopic expression of CgFT in transgenic Arabidopsis plants resulted in early flowering compared to wild-type plants and significant up-regulation of APETALA1 (AP1) expression. Our data indicates that CgFT is a putative phosphatidylethanolamine-binding protein gene in Cymbidium that may regulate the vegetative to reproductive transition in flowers, similar to its Arabidopsis ortholog.

Show MeSH

Related in: MedlinePlus

DNA sequence alignment of CsFT, CgFT and CeFT. Start and termination codons are underlined; The intron is marked by lines above the sequence; GT-AG are marked with open boxes; non-identical nucleotide acids are marked with shaded boxes.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC3472752&req=5

f1-ijms-13-11385: DNA sequence alignment of CsFT, CgFT and CeFT. Start and termination codons are underlined; The intron is marked by lines above the sequence; GT-AG are marked with open boxes; non-identical nucleotide acids are marked with shaded boxes.

Mentions: To investigate the role of the PEBP/RKIP gene family in regulating the transition from vegetative to reproductive growth in Cymbidium, PEBP orthologs were identified and characterized. A combined RT-PCR and RACE strategy was used to clone FT from C. sinense “Qi Jian Bai Mo”, C. goeringii and C. ensifolium “Jin Si Ma Wei”. CsFT (GenBank accession number HM120862), CgFT (GenBank accession number HM120863) and CeFT (GenBank accession number HM803115) contain 618-bp nucleotides with an open reading frame (ORF) of 531 bp encoding 176 amino acids (AAs), two exons and one intron (161 bp) (Figure 1). The analysis based on AA sequence alignment shows that the three FT AA sequences are identical; they also share a high identity with FT of other plants in GenBank, such as OnFT (94%) from Oncidium Gower Ramsey, Hd3a (79%) from Oryza sativa, and FT (74%) from Arabidopsis thaliana (Figure 2). AA sequence alignment also revealed that CsFT, CgFT and CeFT contain a conserved domain, which is characteristic of the PEBP-RKIP superfamily. The conserved key AA residues Tyr (Y, site 84) and Gln (Q, site 140) in FT homologs were identified in CsFT, CgFT and CeFT protein (Figure 2). The sequence similarity between CsFT, CgFT, CeFT and other FTs indicates that CsFT, CgFT, and CeFT are the putative Cymbidium FT orthologs. The conserved domains were analyzed in FT: LGRQTVYAPGWRQN (14 AAs) and LYN/IYN conserved domain was similar to other FT proteins [14]. The Cymbidium genes characterized here are closely related to the FT gene from monocotyledonous plants (Oncidium and Oryza sativa) [8,15] based on their protein sequences which have a conserved domain LYN (Figure 2). This suggests that CsFT, CgFT, and CeFT are potentially FT orthologs that regulate the transition from vegetative state to flowering and flower initiation in Cymbidium. The AA sequence alignment shown in Figure 2 and the sequences for several other FT orthologs were used to construct a phylogenetic tree for the FT group of genes (Figure 3). CsFT, CgFT and CeFT were grouped within the monocotyledonous FT subgroup and are closely related to Oncidium, followed by Triticum aestivum, Hordeum vulgare and Oryza sativa.


Molecular cloning and functional analysis of Three FLOWERING LOCUS T (FT) homologous genes from Chinese Cymbidium.

Huang W, Fang Z, Zeng S, Zhang J, Wu K, Chen Z, Teixeira da Silva JA, Duan J - Int J Mol Sci (2012)

DNA sequence alignment of CsFT, CgFT and CeFT. Start and termination codons are underlined; The intron is marked by lines above the sequence; GT-AG are marked with open boxes; non-identical nucleotide acids are marked with shaded boxes.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC3472752&req=5

f1-ijms-13-11385: DNA sequence alignment of CsFT, CgFT and CeFT. Start and termination codons are underlined; The intron is marked by lines above the sequence; GT-AG are marked with open boxes; non-identical nucleotide acids are marked with shaded boxes.
Mentions: To investigate the role of the PEBP/RKIP gene family in regulating the transition from vegetative to reproductive growth in Cymbidium, PEBP orthologs were identified and characterized. A combined RT-PCR and RACE strategy was used to clone FT from C. sinense “Qi Jian Bai Mo”, C. goeringii and C. ensifolium “Jin Si Ma Wei”. CsFT (GenBank accession number HM120862), CgFT (GenBank accession number HM120863) and CeFT (GenBank accession number HM803115) contain 618-bp nucleotides with an open reading frame (ORF) of 531 bp encoding 176 amino acids (AAs), two exons and one intron (161 bp) (Figure 1). The analysis based on AA sequence alignment shows that the three FT AA sequences are identical; they also share a high identity with FT of other plants in GenBank, such as OnFT (94%) from Oncidium Gower Ramsey, Hd3a (79%) from Oryza sativa, and FT (74%) from Arabidopsis thaliana (Figure 2). AA sequence alignment also revealed that CsFT, CgFT and CeFT contain a conserved domain, which is characteristic of the PEBP-RKIP superfamily. The conserved key AA residues Tyr (Y, site 84) and Gln (Q, site 140) in FT homologs were identified in CsFT, CgFT and CeFT protein (Figure 2). The sequence similarity between CsFT, CgFT, CeFT and other FTs indicates that CsFT, CgFT, and CeFT are the putative Cymbidium FT orthologs. The conserved domains were analyzed in FT: LGRQTVYAPGWRQN (14 AAs) and LYN/IYN conserved domain was similar to other FT proteins [14]. The Cymbidium genes characterized here are closely related to the FT gene from monocotyledonous plants (Oncidium and Oryza sativa) [8,15] based on their protein sequences which have a conserved domain LYN (Figure 2). This suggests that CsFT, CgFT, and CeFT are potentially FT orthologs that regulate the transition from vegetative state to flowering and flower initiation in Cymbidium. The AA sequence alignment shown in Figure 2 and the sequences for several other FT orthologs were used to construct a phylogenetic tree for the FT group of genes (Figure 3). CsFT, CgFT and CeFT were grouped within the monocotyledonous FT subgroup and are closely related to Oncidium, followed by Triticum aestivum, Hordeum vulgare and Oryza sativa.

Bottom Line: Alignment of the AA sequences revealed that CsFT, CgFT and CeFT contain a conserved domain, which is characteristic of the PEBP-RKIP superfamily, and which share high identity with FT of other plants in GenBank: 94% with OnFT from Oncidium Gower Ramsey, 79% with Hd3a from Oryza sativa, and 74% with FT from Arabidopsis thaliana. qRT-PCR analysis showed a diurnal expression pattern of CsFT, CgFT and CeFT following both long day (LD, 16-h light/8-h dark) and short day (SD, 8-h light/16-h dark) treatment.While the transcripts of both CsFT and CeFT under LD were significantly higher than under SD, those of CgFT were higher under SD.Our data indicates that CgFT is a putative phosphatidylethanolamine-binding protein gene in Cymbidium that may regulate the vegetative to reproductive transition in flowers, similar to its Arabidopsis ortholog.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of South China Agricultural Plant Genetics and Breeding, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou 510650, China; E-Mails: weitingpink@hotmail.com (W.H.); zmfang88@163.com (Z.F.); cymbidium1979@yahoo.com.cn (J.Z.); wu_kunlin@163.com (K.W.); duanj@scib.ac.cn (J.D.) ; Graduate University of the Chinese Academy of Sciences, Beijing 100049, China.

ABSTRACT
The FLOWERING LOCUS T (FT) gene plays crucial roles in regulating the transition from the vegetative to reproductive phase. To understand the molecular mechanism of reproduction, three homologous FT genes were isolated and characterized from Cymbidium sinense "Qi Jian Bai Mo", Cymbidium goeringii and Cymbidium ensifolium "Jin Si Ma Wei". The three genes contained 618-bp nucleotides with a 531-bp open reading frame (ORF) of encoding 176 amino acids (AAs). Alignment of the AA sequences revealed that CsFT, CgFT and CeFT contain a conserved domain, which is characteristic of the PEBP-RKIP superfamily, and which share high identity with FT of other plants in GenBank: 94% with OnFT from Oncidium Gower Ramsey, 79% with Hd3a from Oryza sativa, and 74% with FT from Arabidopsis thaliana. qRT-PCR analysis showed a diurnal expression pattern of CsFT, CgFT and CeFT following both long day (LD, 16-h light/8-h dark) and short day (SD, 8-h light/16-h dark) treatment. While the transcripts of both CsFT and CeFT under LD were significantly higher than under SD, those of CgFT were higher under SD. Ectopic expression of CgFT in transgenic Arabidopsis plants resulted in early flowering compared to wild-type plants and significant up-regulation of APETALA1 (AP1) expression. Our data indicates that CgFT is a putative phosphatidylethanolamine-binding protein gene in Cymbidium that may regulate the vegetative to reproductive transition in flowers, similar to its Arabidopsis ortholog.

Show MeSH
Related in: MedlinePlus