Limits...
Nucleotide excision repair in cellular chromatin: studies with yeast from nucleotide to gene to genome.

Waters R, Evans K, Bennett M, Yu S, Reed S - Int J Mol Sci (2012)

Bottom Line: Here we review our development of, and results with, high resolution studies on global genome nucleotide excision repair (GGNER) in Saccharomyces cerevisiae.We consider results employing primarily MFA2 as a model gene, but also those with URA3 located at subtelomeric sequences.In the latter case we also see a role for acetylation at histone H4.

View Article: PubMed Central - PubMed

Affiliation: Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; E-Mails: evansKE3@cardiff.ac.uk (K.E.); bennettMR1@cardiff.ac.uk (M.B.); yuS@cardiff.ac.uk (S.Y.); reedSH1@cardiff.ac.uk (S.R.).

ABSTRACT
Here we review our development of, and results with, high resolution studies on global genome nucleotide excision repair (GGNER) in Saccharomyces cerevisiae. We have focused on how GGNER relates to histone acetylation for its functioning and we have identified the histone acetyl tranferase Gcn5 and acetylation at lysines 9/14 of histone H3 as a major factor in enabling efficient repair. We consider results employing primarily MFA2 as a model gene, but also those with URA3 located at subtelomeric sequences. In the latter case we also see a role for acetylation at histone H4. We then go on to outline the development of a high resolution genome-wide approach that enables one to examine correlations between histone modifications and the nucleotide excision repair (NER) of UV-induced cyclobutane pyrimidine dimers throughout entire genomes. This is an approach that will enable rapid advances in understanding the complexities of how compacted chromatin in chromosomes is processed to access DNA damage and then returned to its pre-damaged status to maintain epigenetic codes.

Show MeSH

Related in: MedlinePlus

Relative CPD repair rate in a part of chromosome 4. Black: NER proficient cells; Grey: NER deficient rad4 cells. For more details see [45].
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC3472735&req=5

f17-ijms-13-11141: Relative CPD repair rate in a part of chromosome 4. Black: NER proficient cells; Grey: NER deficient rad4 cells. For more details see [45].

Mentions: In this Figure we plot the observed versus the expected frequency of CPDs, as calculated from the DNA sequence and employing the algorithm described in [45]. There is a very good correlation between the observed and expected frequencies. We also examined whether or not this approach could be employed to detect changes in CPD frequencies due to DNA repair. Figure 17 shows data indicating that it can. Here the change in frequency seen during a 2 h repair period in NER competent cells is compared to that seen with rad4 NER defective cells. Variable changes are seen when repair operates but no change in frequency is seen in the repair defective mutant.


Nucleotide excision repair in cellular chromatin: studies with yeast from nucleotide to gene to genome.

Waters R, Evans K, Bennett M, Yu S, Reed S - Int J Mol Sci (2012)

Relative CPD repair rate in a part of chromosome 4. Black: NER proficient cells; Grey: NER deficient rad4 cells. For more details see [45].
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC3472735&req=5

f17-ijms-13-11141: Relative CPD repair rate in a part of chromosome 4. Black: NER proficient cells; Grey: NER deficient rad4 cells. For more details see [45].
Mentions: In this Figure we plot the observed versus the expected frequency of CPDs, as calculated from the DNA sequence and employing the algorithm described in [45]. There is a very good correlation between the observed and expected frequencies. We also examined whether or not this approach could be employed to detect changes in CPD frequencies due to DNA repair. Figure 17 shows data indicating that it can. Here the change in frequency seen during a 2 h repair period in NER competent cells is compared to that seen with rad4 NER defective cells. Variable changes are seen when repair operates but no change in frequency is seen in the repair defective mutant.

Bottom Line: Here we review our development of, and results with, high resolution studies on global genome nucleotide excision repair (GGNER) in Saccharomyces cerevisiae.We consider results employing primarily MFA2 as a model gene, but also those with URA3 located at subtelomeric sequences.In the latter case we also see a role for acetylation at histone H4.

View Article: PubMed Central - PubMed

Affiliation: Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; E-Mails: evansKE3@cardiff.ac.uk (K.E.); bennettMR1@cardiff.ac.uk (M.B.); yuS@cardiff.ac.uk (S.Y.); reedSH1@cardiff.ac.uk (S.R.).

ABSTRACT
Here we review our development of, and results with, high resolution studies on global genome nucleotide excision repair (GGNER) in Saccharomyces cerevisiae. We have focused on how GGNER relates to histone acetylation for its functioning and we have identified the histone acetyl tranferase Gcn5 and acetylation at lysines 9/14 of histone H3 as a major factor in enabling efficient repair. We consider results employing primarily MFA2 as a model gene, but also those with URA3 located at subtelomeric sequences. In the latter case we also see a role for acetylation at histone H4. We then go on to outline the development of a high resolution genome-wide approach that enables one to examine correlations between histone modifications and the nucleotide excision repair (NER) of UV-induced cyclobutane pyrimidine dimers throughout entire genomes. This is an approach that will enable rapid advances in understanding the complexities of how compacted chromatin in chromosomes is processed to access DNA damage and then returned to its pre-damaged status to maintain epigenetic codes.

Show MeSH
Related in: MedlinePlus