Limits...
Graphene nanoplatelets as novel reinforcement filler in poly(lactic acid)/epoxidized palm oil green nanocomposites: mechanical properties.

Chieng BW, Ibrahim NA, Yunus WM, Hussein MZ, Giita Silverajah VS - Int J Mol Sci (2012)

Bottom Line: PLA/EPO reinforced with xGnP resulted in an increase of up to 26.5% and 60.6% in the tensile strength and elongation at break of the nanocomposites respectively, compared to PLA/EPO blend.However, incorporation of xGnP has no effect on the flexural strength and modulus.Mechanical properties of PLA were greatly improved by the addition of a small amount of graphene nanoplatelets (<1 wt%).

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; E-Mails: mzobir@science.upm.edu.my (M.Z.H.); vsgiita@gmail.com (V.S.G.S.).

ABSTRACT
Graphene nanoplatelet (xGnP) was investigated as a novel reinforcement filler in mechanical properties for poly(lactic acid) (PLA)/epoxidized palm oil (EPO) blend. PLA/EPO/xGnP green nanocomposites were successfully prepared by melt blending method. PLA/EPO reinforced with xGnP resulted in an increase of up to 26.5% and 60.6% in the tensile strength and elongation at break of the nanocomposites respectively, compared to PLA/EPO blend. XRD pattern showed the presence of peak around 26.5° in PLA/EPO nanocomposites which corresponds to characteristic peak of graphene nanoplatelets. However, incorporation of xGnP has no effect on the flexural strength and modulus. Impact strength of PLA/5 wt% EPO improved by 73.6% with the presence of 0.5 wt% xGnP loading. Mechanical properties of PLA were greatly improved by the addition of a small amount of graphene nanoplatelets (<1 wt%).

No MeSH data available.


TEM micrograph of graphene nanoplatelets.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC3472721&req=5

f13-ijms-13-10920: TEM micrograph of graphene nanoplatelets.

Mentions: Poly(lactic acid) resin, commercial grade 4042D, Mw ~ 390,000 Da, was supplied by NatureWorks® LCC, Minnesota USA. Epoxidized palm oil (EPO) was supplied by Malaysian Palm Oil Board (MPOB, Malaysia). The characteristics of the EPO obtained are listed in Table 1. Graphene nanoplatelets, trade name xGnP®, was supplied by XG sciences Inc, Michigan. Each particle consists of several sheet of graphene with an average thickness of approximately 6–8 nanometers, average diameter of 15 microns. Figure 13 is a micrograph of graphene nanoplatelets attained by transmission electron microscope.


Graphene nanoplatelets as novel reinforcement filler in poly(lactic acid)/epoxidized palm oil green nanocomposites: mechanical properties.

Chieng BW, Ibrahim NA, Yunus WM, Hussein MZ, Giita Silverajah VS - Int J Mol Sci (2012)

TEM micrograph of graphene nanoplatelets.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC3472721&req=5

f13-ijms-13-10920: TEM micrograph of graphene nanoplatelets.
Mentions: Poly(lactic acid) resin, commercial grade 4042D, Mw ~ 390,000 Da, was supplied by NatureWorks® LCC, Minnesota USA. Epoxidized palm oil (EPO) was supplied by Malaysian Palm Oil Board (MPOB, Malaysia). The characteristics of the EPO obtained are listed in Table 1. Graphene nanoplatelets, trade name xGnP®, was supplied by XG sciences Inc, Michigan. Each particle consists of several sheet of graphene with an average thickness of approximately 6–8 nanometers, average diameter of 15 microns. Figure 13 is a micrograph of graphene nanoplatelets attained by transmission electron microscope.

Bottom Line: PLA/EPO reinforced with xGnP resulted in an increase of up to 26.5% and 60.6% in the tensile strength and elongation at break of the nanocomposites respectively, compared to PLA/EPO blend.However, incorporation of xGnP has no effect on the flexural strength and modulus.Mechanical properties of PLA were greatly improved by the addition of a small amount of graphene nanoplatelets (<1 wt%).

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; E-Mails: mzobir@science.upm.edu.my (M.Z.H.); vsgiita@gmail.com (V.S.G.S.).

ABSTRACT
Graphene nanoplatelet (xGnP) was investigated as a novel reinforcement filler in mechanical properties for poly(lactic acid) (PLA)/epoxidized palm oil (EPO) blend. PLA/EPO/xGnP green nanocomposites were successfully prepared by melt blending method. PLA/EPO reinforced with xGnP resulted in an increase of up to 26.5% and 60.6% in the tensile strength and elongation at break of the nanocomposites respectively, compared to PLA/EPO blend. XRD pattern showed the presence of peak around 26.5° in PLA/EPO nanocomposites which corresponds to characteristic peak of graphene nanoplatelets. However, incorporation of xGnP has no effect on the flexural strength and modulus. Impact strength of PLA/5 wt% EPO improved by 73.6% with the presence of 0.5 wt% xGnP loading. Mechanical properties of PLA were greatly improved by the addition of a small amount of graphene nanoplatelets (<1 wt%).

No MeSH data available.