Limits...
Clinical use of aided cortical auditory evoked potentials as a measure of physiological detection or physiological discrimination.

Billings CJ, Papesh MA, Penman TM, Baltzell LS, Gallun FJ - Int J Otolaryngol (2012)

Bottom Line: One major contributor to this ambiguity is the wide range of variability across published studies and across individuals within a given study; some results demonstrate expected amplification effects, while others demonstrate limited or no amplification effects.Recent evidence indicates that some of the variability in amplification effects may be explained by distinguishing between experiments that focused on physiological detection of a stimulus versus those that differentiate responses to two audible signals, or physiological discrimination.Stimulus levels were varied to study the effect of hearing-aid-signal/hearing-aid-noise audibility relative to the noise-masked thresholds.

View Article: PubMed Central - PubMed

Affiliation: National Center for Rehabilitative Auditory Research, Portland Veterans Affairs Medical Center, Portland, OR 97239, USA ; Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR 97239, USA.

ABSTRACT
The clinical usefulness of aided cortical auditory evoked potentials (CAEPs) remains unclear despite several decades of research. One major contributor to this ambiguity is the wide range of variability across published studies and across individuals within a given study; some results demonstrate expected amplification effects, while others demonstrate limited or no amplification effects. Recent evidence indicates that some of the variability in amplification effects may be explained by distinguishing between experiments that focused on physiological detection of a stimulus versus those that differentiate responses to two audible signals, or physiological discrimination. Herein, we ask if either of these approaches is clinically feasible given the inherent challenges with aided CAEPs. N1 and P2 waves were elicited from 12 noise-masked normal-hearing individuals using hearing-aid-processed 1000-Hz pure tones. Stimulus levels were varied to study the effect of hearing-aid-signal/hearing-aid-noise audibility relative to the noise-masked thresholds. Results demonstrate that clinical use of aided CAEPs may be justified when determining whether audible stimuli are physiologically detectable relative to inaudible signals. However, differentiating aided CAEPs elicited from two suprathreshold stimuli (i.e., physiological discrimination) is problematic and should not be used for clinical decision making until a better understanding of the interaction between hearing-aid-processed stimuli and CAEPs can be established.

No MeSH data available.


Related in: MedlinePlus

Mean latency and amplitude measures for Low, Mid, and High conditions as a function of hearing aid recording (error bars: standard error of the mean). Generally, a change from Low to Mid conditions results in decreases in latency and increases in amplitude, and a change from Mid to High results in minimal change in latency and amplitude.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3472537&req=5

fig6: Mean latency and amplitude measures for Low, Mid, and High conditions as a function of hearing aid recording (error bars: standard error of the mean). Generally, a change from Low to Mid conditions results in decreases in latency and increases in amplitude, and a change from Mid to High results in minimal change in latency and amplitude.

Mentions: N1 and P2 peak amplitude and latency data for the Low, Mid, and High conditions are displayed in Figure 6 with corresponding statistical analyses shown in Table 3. As mentioned above, the responses to the two Low conditions for Hearing Aid B (Recording 3) were averaged together for latency/amplitude comparisons between the three hearing aid conditions. The results indicate no main effect of Mid versus High conditions for N1 and P2 measures. However, comparisons of Low versus Mid conditions resulted in main effects of N1 and P2 latency and amplitude.


Clinical use of aided cortical auditory evoked potentials as a measure of physiological detection or physiological discrimination.

Billings CJ, Papesh MA, Penman TM, Baltzell LS, Gallun FJ - Int J Otolaryngol (2012)

Mean latency and amplitude measures for Low, Mid, and High conditions as a function of hearing aid recording (error bars: standard error of the mean). Generally, a change from Low to Mid conditions results in decreases in latency and increases in amplitude, and a change from Mid to High results in minimal change in latency and amplitude.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3472537&req=5

fig6: Mean latency and amplitude measures for Low, Mid, and High conditions as a function of hearing aid recording (error bars: standard error of the mean). Generally, a change from Low to Mid conditions results in decreases in latency and increases in amplitude, and a change from Mid to High results in minimal change in latency and amplitude.
Mentions: N1 and P2 peak amplitude and latency data for the Low, Mid, and High conditions are displayed in Figure 6 with corresponding statistical analyses shown in Table 3. As mentioned above, the responses to the two Low conditions for Hearing Aid B (Recording 3) were averaged together for latency/amplitude comparisons between the three hearing aid conditions. The results indicate no main effect of Mid versus High conditions for N1 and P2 measures. However, comparisons of Low versus Mid conditions resulted in main effects of N1 and P2 latency and amplitude.

Bottom Line: One major contributor to this ambiguity is the wide range of variability across published studies and across individuals within a given study; some results demonstrate expected amplification effects, while others demonstrate limited or no amplification effects.Recent evidence indicates that some of the variability in amplification effects may be explained by distinguishing between experiments that focused on physiological detection of a stimulus versus those that differentiate responses to two audible signals, or physiological discrimination.Stimulus levels were varied to study the effect of hearing-aid-signal/hearing-aid-noise audibility relative to the noise-masked thresholds.

View Article: PubMed Central - PubMed

Affiliation: National Center for Rehabilitative Auditory Research, Portland Veterans Affairs Medical Center, Portland, OR 97239, USA ; Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR 97239, USA.

ABSTRACT
The clinical usefulness of aided cortical auditory evoked potentials (CAEPs) remains unclear despite several decades of research. One major contributor to this ambiguity is the wide range of variability across published studies and across individuals within a given study; some results demonstrate expected amplification effects, while others demonstrate limited or no amplification effects. Recent evidence indicates that some of the variability in amplification effects may be explained by distinguishing between experiments that focused on physiological detection of a stimulus versus those that differentiate responses to two audible signals, or physiological discrimination. Herein, we ask if either of these approaches is clinically feasible given the inherent challenges with aided CAEPs. N1 and P2 waves were elicited from 12 noise-masked normal-hearing individuals using hearing-aid-processed 1000-Hz pure tones. Stimulus levels were varied to study the effect of hearing-aid-signal/hearing-aid-noise audibility relative to the noise-masked thresholds. Results demonstrate that clinical use of aided CAEPs may be justified when determining whether audible stimuli are physiologically detectable relative to inaudible signals. However, differentiating aided CAEPs elicited from two suprathreshold stimuli (i.e., physiological discrimination) is problematic and should not be used for clinical decision making until a better understanding of the interaction between hearing-aid-processed stimuli and CAEPs can be established.

No MeSH data available.


Related in: MedlinePlus