Limits...
Duration reproduction with sensory feedback delay: differential involvement of perception and action time.

Ganzenmüller S, Shi Z, Müller HJ - Front Integr Neurosci (2012)

Bottom Line: However, whether and how sensorimotor delay affects duration reproduction is still unclear.These findings indicate that participants tend to mix the onset of action and the feedback signal more when the feedback is delayed, and they heavily rely on motor-stop signals for the duration reproduction.Furthermore, auditory duration was overestimated compared to visual duration in crossmodal feedback conditions, and the overestimation of auditory duration (or the underestimation of visual duration) was independent of the delay manipulation.

View Article: PubMed Central - PubMed

Affiliation: Department Psychology, General and Experimental Psychology LMU Munich, Germany ; Graduate School of Systemic Neuroscience LMU Munich, Germany.

ABSTRACT
Previous research has shown that voluntary action can attract subsequent, delayed feedback events toward the action, and adaptation to the sensorimotor delay can even reverse motor-sensory temporal order judgments. However, whether and how sensorimotor delay affects duration reproduction is still unclear. To investigate this, we injected an onset- or offset-delay to the sensory feedback signal from a duration reproduction task. We compared duration reproductions within (visual, auditory) modality and across audiovisual modalities with feedback signal onset- and offset-delay manipulations. We found that the reproduced duration was lengthened in both visual and auditory feedback signal onset-delay conditions. The lengthening effect was evident immediately, on the first trial with the onset-delay. However, when the onset of the feedback signal was prior to the action, the lengthening effect was diminished. In contrast, a shortening effect was found with feedback signal offset-delay, though the effect was weaker and manifested only in the auditory offset-delay condition. These findings indicate that participants tend to mix the onset of action and the feedback signal more when the feedback is delayed, and they heavily rely on motor-stop signals for the duration reproduction. Furthermore, auditory duration was overestimated compared to visual duration in crossmodal feedback conditions, and the overestimation of auditory duration (or the underestimation of visual duration) was independent of the delay manipulation.

No MeSH data available.


Related in: MedlinePlus

Normalized reproduction errors and linear regression lines (red) for the onset (left side) and offset (right side) manipulation conditions from a typical dataset. In the onset-manipulation condition, the fitted slope for the feedback signal started before the action onset (0.06) is not significant different from zero, while the slope for the delayed feedback (1.07) is significant higher than zero. In the offset-manipulation condition the slope is 0.30, significantly higher than zero.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3472406&req=5

Figure 5: Normalized reproduction errors and linear regression lines (red) for the onset (left side) and offset (right side) manipulation conditions from a typical dataset. In the onset-manipulation condition, the fitted slope for the feedback signal started before the action onset (0.06) is not significant different from zero, while the slope for the delayed feedback (1.07) is significant higher than zero. In the offset-manipulation condition the slope is 0.30, significantly higher than zero.

Mentions: Figure 5 illustrates relationships between the reproduction error and the relative feedback onset (left panel) and offset (right panel) for a typical participant. For the onset-manipulation condition, there was a significant correlation between positive feedback delays and reproduction errors (correlation coefficient: 0.41, linear slope: 0.89, all p < 0.05). The steep slope indicates an about 89% compensation for the delayed onset in the duration reproduction, which was similar to the finding in Experiment 1. However, such correlation was broken down when the feedback was presented before participants' actions. There was no correlation [mean: 0.1, t(12) = 0.81, p = 0.43] for those “preceded” feedback trials, and the mean slope (0.17) did not significantly differ from zero, t(12) = 0.90, p = 0.39. For the offset-manipulation condition, the correlation between reproduction errors and random offsets was mildly related, mean correlation coefficient 0.31, t(12) = 6.53, p < 0.05. The mean slope (0.3) was significant higher than zero, t(12) = 8.31, p < 0.05, though it was significantly lower than the mean slope of the “delayed” onset condition, t(12) = 3.83, p < 0.05. The mild offset modulation confirmed the findings in Experiments 1 and 3.


Duration reproduction with sensory feedback delay: differential involvement of perception and action time.

Ganzenmüller S, Shi Z, Müller HJ - Front Integr Neurosci (2012)

Normalized reproduction errors and linear regression lines (red) for the onset (left side) and offset (right side) manipulation conditions from a typical dataset. In the onset-manipulation condition, the fitted slope for the feedback signal started before the action onset (0.06) is not significant different from zero, while the slope for the delayed feedback (1.07) is significant higher than zero. In the offset-manipulation condition the slope is 0.30, significantly higher than zero.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3472406&req=5

Figure 5: Normalized reproduction errors and linear regression lines (red) for the onset (left side) and offset (right side) manipulation conditions from a typical dataset. In the onset-manipulation condition, the fitted slope for the feedback signal started before the action onset (0.06) is not significant different from zero, while the slope for the delayed feedback (1.07) is significant higher than zero. In the offset-manipulation condition the slope is 0.30, significantly higher than zero.
Mentions: Figure 5 illustrates relationships between the reproduction error and the relative feedback onset (left panel) and offset (right panel) for a typical participant. For the onset-manipulation condition, there was a significant correlation between positive feedback delays and reproduction errors (correlation coefficient: 0.41, linear slope: 0.89, all p < 0.05). The steep slope indicates an about 89% compensation for the delayed onset in the duration reproduction, which was similar to the finding in Experiment 1. However, such correlation was broken down when the feedback was presented before participants' actions. There was no correlation [mean: 0.1, t(12) = 0.81, p = 0.43] for those “preceded” feedback trials, and the mean slope (0.17) did not significantly differ from zero, t(12) = 0.90, p = 0.39. For the offset-manipulation condition, the correlation between reproduction errors and random offsets was mildly related, mean correlation coefficient 0.31, t(12) = 6.53, p < 0.05. The mean slope (0.3) was significant higher than zero, t(12) = 8.31, p < 0.05, though it was significantly lower than the mean slope of the “delayed” onset condition, t(12) = 3.83, p < 0.05. The mild offset modulation confirmed the findings in Experiments 1 and 3.

Bottom Line: However, whether and how sensorimotor delay affects duration reproduction is still unclear.These findings indicate that participants tend to mix the onset of action and the feedback signal more when the feedback is delayed, and they heavily rely on motor-stop signals for the duration reproduction.Furthermore, auditory duration was overestimated compared to visual duration in crossmodal feedback conditions, and the overestimation of auditory duration (or the underestimation of visual duration) was independent of the delay manipulation.

View Article: PubMed Central - PubMed

Affiliation: Department Psychology, General and Experimental Psychology LMU Munich, Germany ; Graduate School of Systemic Neuroscience LMU Munich, Germany.

ABSTRACT
Previous research has shown that voluntary action can attract subsequent, delayed feedback events toward the action, and adaptation to the sensorimotor delay can even reverse motor-sensory temporal order judgments. However, whether and how sensorimotor delay affects duration reproduction is still unclear. To investigate this, we injected an onset- or offset-delay to the sensory feedback signal from a duration reproduction task. We compared duration reproductions within (visual, auditory) modality and across audiovisual modalities with feedback signal onset- and offset-delay manipulations. We found that the reproduced duration was lengthened in both visual and auditory feedback signal onset-delay conditions. The lengthening effect was evident immediately, on the first trial with the onset-delay. However, when the onset of the feedback signal was prior to the action, the lengthening effect was diminished. In contrast, a shortening effect was found with feedback signal offset-delay, though the effect was weaker and manifested only in the auditory offset-delay condition. These findings indicate that participants tend to mix the onset of action and the feedback signal more when the feedback is delayed, and they heavily rely on motor-stop signals for the duration reproduction. Furthermore, auditory duration was overestimated compared to visual duration in crossmodal feedback conditions, and the overestimation of auditory duration (or the underestimation of visual duration) was independent of the delay manipulation.

No MeSH data available.


Related in: MedlinePlus