Limits...
Review: magnetic resonance imaging of male/female differences in human adolescent brain anatomy.

Giedd JN, Raznahan A, Mills KL, Lenroot RK - Biol Sex Differ (2012)

Bottom Line: Improvements in neuroimaging technologies, and greater access to their use, have generated a plethora of data regarding male/female differences in the developing brain.Cortical gray matter differences are modulated by androgen receptor genotyope and by circulating levels of hormones.White matter volumes increase throughout childhood and adolescence in both sexes but more rapidly in adolescent males resulting in an expanding magnitude of sex differences from childhood to adulthood.

View Article: PubMed Central - HTML - PubMed

Affiliation: Child Psychiatry Branch, Brain Imaging Unit, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, MSC 1367, Building 10, Room 4 C110, Bethesda, MD, 20892, USA. jg@nih.gov.

ABSTRACT
Improvements in neuroimaging technologies, and greater access to their use, have generated a plethora of data regarding male/female differences in the developing brain. Examination of these differences may shed light on the pathophysiology of the many illnesses that differ between the sexes and ultimately lead to more effective interventions. In this review, we attempt to synthesize the anatomic magnetic resonance imaging (MRI) literature of male/female brain differences with emphasis on studies encompassing adolescence - a time of divergence in physical and behavioral characteristics. Across all ages total brain size is consistently reported to be about 10% larger in males. Structures commonly reported to be different between sexes include the caudate nucleus, amygdala, hippocampus, and cerebellum - all noted to have a relatively high density of sex steroid receptors. The direction and magnitude of reported brain differences depends on the methodology of data acquisition and analysis, whether and how the subcomponents are adjusted for the total brain volume difference, and the age of the participants in the studies. Longitudinal studies indicate regional cortical gray matter volumes follow inverted U shaped developmental trajectories with peak size occurring one to three years earlier in females. Cortical gray matter differences are modulated by androgen receptor genotyope and by circulating levels of hormones. White matter volumes increase throughout childhood and adolescence in both sexes but more rapidly in adolescent males resulting in an expanding magnitude of sex differences from childhood to adulthood.

No MeSH data available.


Related in: MedlinePlus

Mean volume by age in years for males (N = 475 scans) and females (N = 354 scans). Middle lines in each set of three lines represent mean values, and upper and lower lines represent upper and lower 95% confidence intervals. All curves differed significantly in height and shape. Figure adapted from Lenroot et al. (2007).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3472204&req=5

Figure 1: Mean volume by age in years for males (N = 475 scans) and females (N = 354 scans). Middle lines in each set of three lines represent mean values, and upper and lower lines represent upper and lower 95% confidence intervals. All curves differed significantly in height and shape. Figure adapted from Lenroot et al. (2007).

Mentions: An analysis from an ongoing longitudinal study in our lab of 829 scans from 387 unrelated individuals (age range 3-27, 209 males), demonstrated that neurodevelopmental trajectories of cortical gray matter were significantly different between males and females [23]. Total brain size followed an inverted U trajectory in both sexes, with peak total brain size occurring at approximately 10.5 years in females and 14.5 years in males. Regional GM volumes also followed an inverted U shaped maturational curve and peaked earlier in females [see Figure 1.


Review: magnetic resonance imaging of male/female differences in human adolescent brain anatomy.

Giedd JN, Raznahan A, Mills KL, Lenroot RK - Biol Sex Differ (2012)

Mean volume by age in years for males (N = 475 scans) and females (N = 354 scans). Middle lines in each set of three lines represent mean values, and upper and lower lines represent upper and lower 95% confidence intervals. All curves differed significantly in height and shape. Figure adapted from Lenroot et al. (2007).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3472204&req=5

Figure 1: Mean volume by age in years for males (N = 475 scans) and females (N = 354 scans). Middle lines in each set of three lines represent mean values, and upper and lower lines represent upper and lower 95% confidence intervals. All curves differed significantly in height and shape. Figure adapted from Lenroot et al. (2007).
Mentions: An analysis from an ongoing longitudinal study in our lab of 829 scans from 387 unrelated individuals (age range 3-27, 209 males), demonstrated that neurodevelopmental trajectories of cortical gray matter were significantly different between males and females [23]. Total brain size followed an inverted U trajectory in both sexes, with peak total brain size occurring at approximately 10.5 years in females and 14.5 years in males. Regional GM volumes also followed an inverted U shaped maturational curve and peaked earlier in females [see Figure 1.

Bottom Line: Improvements in neuroimaging technologies, and greater access to their use, have generated a plethora of data regarding male/female differences in the developing brain.Cortical gray matter differences are modulated by androgen receptor genotyope and by circulating levels of hormones.White matter volumes increase throughout childhood and adolescence in both sexes but more rapidly in adolescent males resulting in an expanding magnitude of sex differences from childhood to adulthood.

View Article: PubMed Central - HTML - PubMed

Affiliation: Child Psychiatry Branch, Brain Imaging Unit, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, MSC 1367, Building 10, Room 4 C110, Bethesda, MD, 20892, USA. jg@nih.gov.

ABSTRACT
Improvements in neuroimaging technologies, and greater access to their use, have generated a plethora of data regarding male/female differences in the developing brain. Examination of these differences may shed light on the pathophysiology of the many illnesses that differ between the sexes and ultimately lead to more effective interventions. In this review, we attempt to synthesize the anatomic magnetic resonance imaging (MRI) literature of male/female brain differences with emphasis on studies encompassing adolescence - a time of divergence in physical and behavioral characteristics. Across all ages total brain size is consistently reported to be about 10% larger in males. Structures commonly reported to be different between sexes include the caudate nucleus, amygdala, hippocampus, and cerebellum - all noted to have a relatively high density of sex steroid receptors. The direction and magnitude of reported brain differences depends on the methodology of data acquisition and analysis, whether and how the subcomponents are adjusted for the total brain volume difference, and the age of the participants in the studies. Longitudinal studies indicate regional cortical gray matter volumes follow inverted U shaped developmental trajectories with peak size occurring one to three years earlier in females. Cortical gray matter differences are modulated by androgen receptor genotyope and by circulating levels of hormones. White matter volumes increase throughout childhood and adolescence in both sexes but more rapidly in adolescent males resulting in an expanding magnitude of sex differences from childhood to adulthood.

No MeSH data available.


Related in: MedlinePlus