Limits...
Allicin enhances host pro-inflammatory immune responses and protects against acute murine malaria infection.

Feng Y, Zhu X, Wang Q, Jiang Y, Shang H, Cui L, Cao Y - Malar. J. (2012)

Bottom Line: This effect is at least partially due to improved host immune responses.The absolute numbers of CD4+ T cells, DCs and macrophages were significantly higher in allicin-treated mice.In addition, allicin promoted the maturation of CD11c+ DCs, whereas it did not cause major changes in IL-4 and the level of anti-inflammatory cytokine IL-10.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.

ABSTRACT

Background: During malaria infection, multiple pro-inflammatory mediators including IFN-γ, TNF and nitric oxide (NO) play a crucial role in the protection against the parasites. Modulation of host immunity is an important strategy to improve the outcome of malaria infection. Allicin is the major biologically active component of garlic and shows anti-microbial activity. Allicin is also active against protozoan parasites including Plasmodium, which is thought to be mediated by inhibiting cysteine proteases. In this study, the immunomodulatory activities of allicin were assessed during acute malaria infection using a rodent malaria model Plasmodium yoelii 17XL.

Methods: To determine whether allicin modulates host immune responses against malaria infection, mice were treated with allicin after infection with P. yoelii 17XL. Mortality was checked daily and parasitaemia was determined every other day. Pro-inflammatory mediators and IL-4 were quantified by ELISA, while NO level was determined by the Griess method. The populations of dendritic cells (DCs), macrophages, CD4+ T and regulatory T cells (Treg) were assessed by FACS.

Results: Allicin reduced parasitaemia and prolonged survival of the host in a dose-dependent manner. This effect is at least partially due to improved host immune responses. Results showed that allicin treatment enhanced the production of pro-inflammatory mediators such as IFN-γ, TNF, IL-12p70 and NO. The absolute numbers of CD4+ T cells, DCs and macrophages were significantly higher in allicin-treated mice. In addition, allicin promoted the maturation of CD11c+ DCs, whereas it did not cause major changes in IL-4 and the level of anti-inflammatory cytokine IL-10.

Conclusions: Allicin could partially protect host against P. yoelii 17XL through enhancement of the host innate and adaptive immune responses.

Show MeSH

Related in: MedlinePlus

Effects of allicin treatments on DCs during P. yoelii 17XL infection. Representative graphs show the absolute numbers of cells in the spleens for (A) mDCs, (B) pDCs, and (C) CD11c+ MHCII+ DCs, (D) CD11c+ TLR9+ DCs on day 0, 3, and 5 PI. The cells were quantified by flow cytometry analysis and data presented as the mean ± standard error (n = 3 mice/group). Results are representative of three independent experiments. Error bars represents SEM. Asterisks indicate statistically significant differences (*: P < 0.05; **: P <0.01) between groups.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3472178&req=5

Figure 5: Effects of allicin treatments on DCs during P. yoelii 17XL infection. Representative graphs show the absolute numbers of cells in the spleens for (A) mDCs, (B) pDCs, and (C) CD11c+ MHCII+ DCs, (D) CD11c+ TLR9+ DCs on day 0, 3, and 5 PI. The cells were quantified by flow cytometry analysis and data presented as the mean ± standard error (n = 3 mice/group). Results are representative of three independent experiments. Error bars represents SEM. Asterisks indicate statistically significant differences (*: P < 0.05; **: P <0.01) between groups.

Mentions: DCs are the critical link between innate and adaptive immune responses. Two subpopulations of DCs are defined as mDCs (CD11c+CD11b+) and pDCs (CD11c+CD45R/B220+). On day 3 PI, the numbers of mDCs were not significantly different between the allicin treatment groups and control (Figure 5A). However, 9 mg/kg allicin significantly suppressed the total number of spleen pDCs (Figure 5B). On day 5 PI, allicin treatment at 3 mg/kg produced more mDCs and pDCs, albeit the increases were not statistically significant. In comparison, the numbers of both DC populations on day 5 PI in the 9 mg/kg allicin treatment group were significantly higher than those in the control or 3 mg/kg allicin treatment groups (Figure 5A, B).


Allicin enhances host pro-inflammatory immune responses and protects against acute murine malaria infection.

Feng Y, Zhu X, Wang Q, Jiang Y, Shang H, Cui L, Cao Y - Malar. J. (2012)

Effects of allicin treatments on DCs during P. yoelii 17XL infection. Representative graphs show the absolute numbers of cells in the spleens for (A) mDCs, (B) pDCs, and (C) CD11c+ MHCII+ DCs, (D) CD11c+ TLR9+ DCs on day 0, 3, and 5 PI. The cells were quantified by flow cytometry analysis and data presented as the mean ± standard error (n = 3 mice/group). Results are representative of three independent experiments. Error bars represents SEM. Asterisks indicate statistically significant differences (*: P < 0.05; **: P <0.01) between groups.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3472178&req=5

Figure 5: Effects of allicin treatments on DCs during P. yoelii 17XL infection. Representative graphs show the absolute numbers of cells in the spleens for (A) mDCs, (B) pDCs, and (C) CD11c+ MHCII+ DCs, (D) CD11c+ TLR9+ DCs on day 0, 3, and 5 PI. The cells were quantified by flow cytometry analysis and data presented as the mean ± standard error (n = 3 mice/group). Results are representative of three independent experiments. Error bars represents SEM. Asterisks indicate statistically significant differences (*: P < 0.05; **: P <0.01) between groups.
Mentions: DCs are the critical link between innate and adaptive immune responses. Two subpopulations of DCs are defined as mDCs (CD11c+CD11b+) and pDCs (CD11c+CD45R/B220+). On day 3 PI, the numbers of mDCs were not significantly different between the allicin treatment groups and control (Figure 5A). However, 9 mg/kg allicin significantly suppressed the total number of spleen pDCs (Figure 5B). On day 5 PI, allicin treatment at 3 mg/kg produced more mDCs and pDCs, albeit the increases were not statistically significant. In comparison, the numbers of both DC populations on day 5 PI in the 9 mg/kg allicin treatment group were significantly higher than those in the control or 3 mg/kg allicin treatment groups (Figure 5A, B).

Bottom Line: This effect is at least partially due to improved host immune responses.The absolute numbers of CD4+ T cells, DCs and macrophages were significantly higher in allicin-treated mice.In addition, allicin promoted the maturation of CD11c+ DCs, whereas it did not cause major changes in IL-4 and the level of anti-inflammatory cytokine IL-10.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.

ABSTRACT

Background: During malaria infection, multiple pro-inflammatory mediators including IFN-γ, TNF and nitric oxide (NO) play a crucial role in the protection against the parasites. Modulation of host immunity is an important strategy to improve the outcome of malaria infection. Allicin is the major biologically active component of garlic and shows anti-microbial activity. Allicin is also active against protozoan parasites including Plasmodium, which is thought to be mediated by inhibiting cysteine proteases. In this study, the immunomodulatory activities of allicin were assessed during acute malaria infection using a rodent malaria model Plasmodium yoelii 17XL.

Methods: To determine whether allicin modulates host immune responses against malaria infection, mice were treated with allicin after infection with P. yoelii 17XL. Mortality was checked daily and parasitaemia was determined every other day. Pro-inflammatory mediators and IL-4 were quantified by ELISA, while NO level was determined by the Griess method. The populations of dendritic cells (DCs), macrophages, CD4+ T and regulatory T cells (Treg) were assessed by FACS.

Results: Allicin reduced parasitaemia and prolonged survival of the host in a dose-dependent manner. This effect is at least partially due to improved host immune responses. Results showed that allicin treatment enhanced the production of pro-inflammatory mediators such as IFN-γ, TNF, IL-12p70 and NO. The absolute numbers of CD4+ T cells, DCs and macrophages were significantly higher in allicin-treated mice. In addition, allicin promoted the maturation of CD11c+ DCs, whereas it did not cause major changes in IL-4 and the level of anti-inflammatory cytokine IL-10.

Conclusions: Allicin could partially protect host against P. yoelii 17XL through enhancement of the host innate and adaptive immune responses.

Show MeSH
Related in: MedlinePlus