Limits...
Re-visiting phylogenetic and taxonomic relationships in the genus Saga (Insecta: Orthoptera).

Kolics B, Ács Z, Chobanov DP, Orci KM, Qiang LS, Kovács B, Kondorosy E, Decsi K, Taller J, Specziár A, Orbán L, Müller T - PLoS ONE (2012)

Bottom Line: The above results showed better agreement with the morphological data than with earlier ones based either on karyology or acoustic information only.After reviewing our data, we concluded that Saga pedo has most likely evolved from S. c. gracilis and not from S. rammei or S. ephippigera, as proposed by earlier studies.The present work sets the stage for future genetic and experimental investigations of Saginae and highlights the need for additional comprehensive analysis involving more Asian Saga species.

View Article: PubMed Central - PubMed

Affiliation: Department of Plant Sciences and Biotechnology, Georgikon Faculty, University of Pannonia, Keszthely, Hungary.

ABSTRACT
Twelve of the 13 bushcricket species of the Saga genus are bisexuals and diploids, except the parthenogenetic and tetraploid bush cricket, Saga pedo. Despite a continuous research effort stretching through the 1900s, the taxonomic relationships of the Saga species are still disputed. In this study, our primary aim was to reveal natural relationships of the European Saga species and three of their Asian relatives, with special attention to the problematic taxonomy of two subspecies: S. campbelli campbelli and S. c. gracilis. Following a phylogenetic analysis of eight species, a comprehensive study was carried out on the above three taxa by using acoustic and morphometric approaches in parallel. Our phylogenetic data showed that European Saga species evolved from a monophyletic lineage. The geographical transitional species S. cappadocica was positioned between European and Asian lineages supporting the idea that the European Saga lineage originated phylogeographically from the Asian clade. The above results showed better agreement with the morphological data than with earlier ones based either on karyology or acoustic information only. After reviewing our data, we concluded that Saga pedo has most likely evolved from S. c. gracilis and not from S. rammei or S. ephippigera, as proposed by earlier studies. S. c. gracilis shares the same ITS2 haplotype with S. pedo, indicating that the latter could have evolved from populations of the former, probably through whole genome duplication. Based on acoustic and morphometric differences, we propose to elevate the two subspecies, S. campbelli campbelli and S. c. gracilis, to species level status, as Saga gracilis Kis 1962, and Saga campbelli Uvarov 1921. The present work sets the stage for future genetic and experimental investigations of Saginae and highlights the need for additional comprehensive analysis involving more Asian Saga species.

Show MeSH
The European Saga species.A) S. natoliae; B) S. rammei; C) S. hellenica; D) S. pedo; E) S. c. campbelli; F) S. c. gracilis.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3420257&req=5

pone-0042229-g001: The European Saga species.A) S. natoliae; B) S. rammei; C) S. hellenica; D) S. pedo; E) S. c. campbelli; F) S. c. gracilis.

Mentions: Orthoptera species comprise mostly herbivores and omnivores with few carnivorous representatives. Among the latter, subfamily Saginae includes some of the most specialised and the largest obligatory carnivorous bush crickets. The subfamily includes four genera, distributed over two highly separated regions - the South and Southeast of the Sub-Saharan Africa (three genera) and part of the Western Palearctic (genus Saga). Comprising the largest European orthopterans, the genus Saga contains 13 species [1], of which five inhabit Continental Europe (one of them penetrating into Western Siberia), while the rest live in Asia (the Caucasus region, Turkey, Syria, Lebanon, Israel, Iran, and Iraq). The majority of the Saga species are bisexual anddiploid; they inhabit the Balkan Peninsula and parts of the Middle East (see Fig. 1 for pictures of the European species concerned, and Fig. S1 for distribution of the species studied here). The only tetraploid member of the genus is the parthenogenetic bush cricket, Saga pedo Pallas 1771.It occupies a territory much larger than that of any bisexual species, from the coast of Portugal [2] to Xinjiang, Uyghur Region, China [3]. Moreover, it was also introduced to North-America [4].


Re-visiting phylogenetic and taxonomic relationships in the genus Saga (Insecta: Orthoptera).

Kolics B, Ács Z, Chobanov DP, Orci KM, Qiang LS, Kovács B, Kondorosy E, Decsi K, Taller J, Specziár A, Orbán L, Müller T - PLoS ONE (2012)

The European Saga species.A) S. natoliae; B) S. rammei; C) S. hellenica; D) S. pedo; E) S. c. campbelli; F) S. c. gracilis.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3420257&req=5

pone-0042229-g001: The European Saga species.A) S. natoliae; B) S. rammei; C) S. hellenica; D) S. pedo; E) S. c. campbelli; F) S. c. gracilis.
Mentions: Orthoptera species comprise mostly herbivores and omnivores with few carnivorous representatives. Among the latter, subfamily Saginae includes some of the most specialised and the largest obligatory carnivorous bush crickets. The subfamily includes four genera, distributed over two highly separated regions - the South and Southeast of the Sub-Saharan Africa (three genera) and part of the Western Palearctic (genus Saga). Comprising the largest European orthopterans, the genus Saga contains 13 species [1], of which five inhabit Continental Europe (one of them penetrating into Western Siberia), while the rest live in Asia (the Caucasus region, Turkey, Syria, Lebanon, Israel, Iran, and Iraq). The majority of the Saga species are bisexual anddiploid; they inhabit the Balkan Peninsula and parts of the Middle East (see Fig. 1 for pictures of the European species concerned, and Fig. S1 for distribution of the species studied here). The only tetraploid member of the genus is the parthenogenetic bush cricket, Saga pedo Pallas 1771.It occupies a territory much larger than that of any bisexual species, from the coast of Portugal [2] to Xinjiang, Uyghur Region, China [3]. Moreover, it was also introduced to North-America [4].

Bottom Line: The above results showed better agreement with the morphological data than with earlier ones based either on karyology or acoustic information only.After reviewing our data, we concluded that Saga pedo has most likely evolved from S. c. gracilis and not from S. rammei or S. ephippigera, as proposed by earlier studies.The present work sets the stage for future genetic and experimental investigations of Saginae and highlights the need for additional comprehensive analysis involving more Asian Saga species.

View Article: PubMed Central - PubMed

Affiliation: Department of Plant Sciences and Biotechnology, Georgikon Faculty, University of Pannonia, Keszthely, Hungary.

ABSTRACT
Twelve of the 13 bushcricket species of the Saga genus are bisexuals and diploids, except the parthenogenetic and tetraploid bush cricket, Saga pedo. Despite a continuous research effort stretching through the 1900s, the taxonomic relationships of the Saga species are still disputed. In this study, our primary aim was to reveal natural relationships of the European Saga species and three of their Asian relatives, with special attention to the problematic taxonomy of two subspecies: S. campbelli campbelli and S. c. gracilis. Following a phylogenetic analysis of eight species, a comprehensive study was carried out on the above three taxa by using acoustic and morphometric approaches in parallel. Our phylogenetic data showed that European Saga species evolved from a monophyletic lineage. The geographical transitional species S. cappadocica was positioned between European and Asian lineages supporting the idea that the European Saga lineage originated phylogeographically from the Asian clade. The above results showed better agreement with the morphological data than with earlier ones based either on karyology or acoustic information only. After reviewing our data, we concluded that Saga pedo has most likely evolved from S. c. gracilis and not from S. rammei or S. ephippigera, as proposed by earlier studies. S. c. gracilis shares the same ITS2 haplotype with S. pedo, indicating that the latter could have evolved from populations of the former, probably through whole genome duplication. Based on acoustic and morphometric differences, we propose to elevate the two subspecies, S. campbelli campbelli and S. c. gracilis, to species level status, as Saga gracilis Kis 1962, and Saga campbelli Uvarov 1921. The present work sets the stage for future genetic and experimental investigations of Saginae and highlights the need for additional comprehensive analysis involving more Asian Saga species.

Show MeSH