Limits...
Comprehensive connectivity of the mouse main olfactory bulb: analysis and online digital atlas.

Hintiryan H, Gou L, Zingg B, Yamashita S, Lyden HM, Song MY, Grewal AK, Zhang X, Toga AW, Dong HW - Front Neuroanat (2012)

Bottom Line: To facilitate use of the data, raw images are made publicly accessible through our online interactive visualization tool, the iConnectome, where users can view and annotate the high-resolution, multi-fluorescent connectivity data (www.MouseConnectome.org).Additional MOB injections and injections of the accessory olfactory bulb (AOB), anterior olfactory nucleus (AON), and other olfactory cortical areas gradually will be made available.Analysis of connections from different regions of the MOB revealed a novel, topographically arranged MOB projection roadmap, demonstrated disparate MOB connectivity with anterior versus posterior piriform cortical area (PIR), and exposed some novel aspects of well-established cortical olfactory projections.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Neuro Imaging, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles Los Angeles, CA, USA.

ABSTRACT
We introduce the first open resource for mouse olfactory connectivity data produced as part of the Mouse Connectome Project (MCP) at UCLA. The MCP aims to assemble a whole-brain connectivity atlas for the C57Bl/6J mouse using a double coinjection tracing method. Each coinjection consists of one anterograde and one retrograde tracer, which affords the advantage of simultaneously identifying efferent and afferent pathways and directly identifying reciprocal connectivity of injection sites. The systematic application of double coinjections potentially reveals interaction stations between injections and allows for the study of connectivity at the network level. To facilitate use of the data, raw images are made publicly accessible through our online interactive visualization tool, the iConnectome, where users can view and annotate the high-resolution, multi-fluorescent connectivity data (www.MouseConnectome.org). Systematic double coinjections were made into different regions of the main olfactory bulb (MOB) and data from 18 MOB cases (~72 pathways; 36 efferent/36 afferent) currently are available to view in iConnectome within their corresponding atlas level and their own bright-field cytoarchitectural background. Additional MOB injections and injections of the accessory olfactory bulb (AOB), anterior olfactory nucleus (AON), and other olfactory cortical areas gradually will be made available. Analysis of connections from different regions of the MOB revealed a novel, topographically arranged MOB projection roadmap, demonstrated disparate MOB connectivity with anterior versus posterior piriform cortical area (PIR), and exposed some novel aspects of well-established cortical olfactory projections.

No MeSH data available.


Related in: MedlinePlus

Axons from the dorsal medial MOB (A1) travel through lotd (A2) to lot and travel along the dorsolateral edge within the lot (A3,A4). Ventral medial MOB axons (B1,B2) travel ventrolaterally toward lot(B2,B2') and within the ventromedial parts of lot(B3–B5). B2' is one section posterior to section in B2. Axons from middle medial MOB (C1) cross over either through the lotd or ventrolaterally toward the lot(C2) and travel either through its dorsolateral or ventromedial parts (C3,C4). Scale bar, 200 μm. Case numbers SW101213-01A (A), SW101215-01A (B), SW100302-01A (C).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3412993&req=5

Figure 6: Axons from the dorsal medial MOB (A1) travel through lotd (A2) to lot and travel along the dorsolateral edge within the lot (A3,A4). Ventral medial MOB axons (B1,B2) travel ventrolaterally toward lot(B2,B2') and within the ventromedial parts of lot(B3–B5). B2' is one section posterior to section in B2. Axons from middle medial MOB (C1) cross over either through the lotd or ventrolaterally toward the lot(C2) and travel either through its dorsolateral or ventromedial parts (C3,C4). Scale bar, 200 μm. Case numbers SW101213-01A (A), SW101215-01A (B), SW100302-01A (C).

Mentions: Double coinjections were made into the (1) dorsal, (2) middle, or (3) ventral MOBmi along the dorsal-ventral axis and into medial or lateral regions along the medial-lateral axis (Figures 4A,C, 5A, 6A1,A2,B1,B2,C1).


Comprehensive connectivity of the mouse main olfactory bulb: analysis and online digital atlas.

Hintiryan H, Gou L, Zingg B, Yamashita S, Lyden HM, Song MY, Grewal AK, Zhang X, Toga AW, Dong HW - Front Neuroanat (2012)

Axons from the dorsal medial MOB (A1) travel through lotd (A2) to lot and travel along the dorsolateral edge within the lot (A3,A4). Ventral medial MOB axons (B1,B2) travel ventrolaterally toward lot(B2,B2') and within the ventromedial parts of lot(B3–B5). B2' is one section posterior to section in B2. Axons from middle medial MOB (C1) cross over either through the lotd or ventrolaterally toward the lot(C2) and travel either through its dorsolateral or ventromedial parts (C3,C4). Scale bar, 200 μm. Case numbers SW101213-01A (A), SW101215-01A (B), SW100302-01A (C).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3412993&req=5

Figure 6: Axons from the dorsal medial MOB (A1) travel through lotd (A2) to lot and travel along the dorsolateral edge within the lot (A3,A4). Ventral medial MOB axons (B1,B2) travel ventrolaterally toward lot(B2,B2') and within the ventromedial parts of lot(B3–B5). B2' is one section posterior to section in B2. Axons from middle medial MOB (C1) cross over either through the lotd or ventrolaterally toward the lot(C2) and travel either through its dorsolateral or ventromedial parts (C3,C4). Scale bar, 200 μm. Case numbers SW101213-01A (A), SW101215-01A (B), SW100302-01A (C).
Mentions: Double coinjections were made into the (1) dorsal, (2) middle, or (3) ventral MOBmi along the dorsal-ventral axis and into medial or lateral regions along the medial-lateral axis (Figures 4A,C, 5A, 6A1,A2,B1,B2,C1).

Bottom Line: To facilitate use of the data, raw images are made publicly accessible through our online interactive visualization tool, the iConnectome, where users can view and annotate the high-resolution, multi-fluorescent connectivity data (www.MouseConnectome.org).Additional MOB injections and injections of the accessory olfactory bulb (AOB), anterior olfactory nucleus (AON), and other olfactory cortical areas gradually will be made available.Analysis of connections from different regions of the MOB revealed a novel, topographically arranged MOB projection roadmap, demonstrated disparate MOB connectivity with anterior versus posterior piriform cortical area (PIR), and exposed some novel aspects of well-established cortical olfactory projections.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Neuro Imaging, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles Los Angeles, CA, USA.

ABSTRACT
We introduce the first open resource for mouse olfactory connectivity data produced as part of the Mouse Connectome Project (MCP) at UCLA. The MCP aims to assemble a whole-brain connectivity atlas for the C57Bl/6J mouse using a double coinjection tracing method. Each coinjection consists of one anterograde and one retrograde tracer, which affords the advantage of simultaneously identifying efferent and afferent pathways and directly identifying reciprocal connectivity of injection sites. The systematic application of double coinjections potentially reveals interaction stations between injections and allows for the study of connectivity at the network level. To facilitate use of the data, raw images are made publicly accessible through our online interactive visualization tool, the iConnectome, where users can view and annotate the high-resolution, multi-fluorescent connectivity data (www.MouseConnectome.org). Systematic double coinjections were made into different regions of the main olfactory bulb (MOB) and data from 18 MOB cases (~72 pathways; 36 efferent/36 afferent) currently are available to view in iConnectome within their corresponding atlas level and their own bright-field cytoarchitectural background. Additional MOB injections and injections of the accessory olfactory bulb (AOB), anterior olfactory nucleus (AON), and other olfactory cortical areas gradually will be made available. Analysis of connections from different regions of the MOB revealed a novel, topographically arranged MOB projection roadmap, demonstrated disparate MOB connectivity with anterior versus posterior piriform cortical area (PIR), and exposed some novel aspects of well-established cortical olfactory projections.

No MeSH data available.


Related in: MedlinePlus