Limits...
Complete mitochondrial genome of the free-living earwig, Challia fletcheri (Dermaptera: Pygidicranidae) and phylogeny of Polyneoptera.

Wan X, Kim MI, Kim MJ, Kim I - PLoS ONE (2012)

Bottom Line: We sequenced the complete mitochondrial genome of the free-living earwig, Challia fletcheri, compared its genomic features to other available mitochondrial sequences from polyneopterous insects.The reversal pattern of skewness is explained in terms of inversion of replication origin.All phylogenetic analyses consistently placed Dermaptera as the sister to Plecoptera, leaving them as the most basal lineage of Polyneoptera or sister to Ephemeroptera, and placed Odonata consistently as the most basal lineage of the Pterygota.

View Article: PubMed Central - PubMed

Affiliation: College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Republic of Korea.

ABSTRACT
The insect order Dermaptera, belonging to Polyneoptera, includes ∼2,000 extant species, but no dermapteran mitochondrial genome has been sequenced. We sequenced the complete mitochondrial genome of the free-living earwig, Challia fletcheri, compared its genomic features to other available mitochondrial sequences from polyneopterous insects. In addition, the Dermaptera, together with the other known polyneopteran mitochondrial genome sequences (protein coding, ribosomal RNA, and transfer RNA genes), were employed to understand the phylogeny of Polyneoptera, one of the least resolved insect phylogenies, with emphasis on the placement of Dermaptera. The complete mitochondrial genome of C. fletcheri presents the following several unusual features: the longest size in insects is 20,456 bp; it harbors the largest tandem repeat units (TRU) among insects; it displays T- and G-skewness on the major strand and A- and C-skewness on the minor strand, which is a reversal of the general pattern found in most insect mitochondrial genomes, and it possesses a unique gene arrangement characterized by a series of gene translocations and/or inversions. The reversal pattern of skewness is explained in terms of inversion of replication origin. All phylogenetic analyses consistently placed Dermaptera as the sister to Plecoptera, leaving them as the most basal lineage of Polyneoptera or sister to Ephemeroptera, and placed Odonata consistently as the most basal lineage of the Pterygota.

Show MeSH

Related in: MedlinePlus

Predicted secondary structure for trnY-like sequence found in intergenic spacer between trnE and trnF.The rectangular boxes indicate the respective anticodons, and the nucleotide position is indicated at the beginning and end sites of the structures.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3412835&req=5

pone-0042056-g005: Predicted secondary structure for trnY-like sequence found in intergenic spacer between trnE and trnF.The rectangular boxes indicate the respective anticodons, and the nucleotide position is indicated at the beginning and end sites of the structures.

Mentions: The second longest non-coding sequence (217 bp) is located between trnE and trnF (Figure 1), wherein 1 trnY-like sequence with a proper secondary structure and anticodon is found (Figure 5). This region is not homologous to any other gene or region of the genome. The sequence similarity between trnY-like and regular trnY gene is 58%. Another substantially large non-coding region (131 bp) is located between nad2 and trnI and can be labeled as an unidentified opening reading frame (UORF) because it comprises a start codon (TTG) infrequently described in many insects and an incomplete stop codon (TA), encoding 43 amino acids. The encoded peptide, however, is not similar to any known sequence, although an extensive GenBank database on NCBI has been searched through BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Triatoma dimidiate (Hemiptera) mitochondrial genome has been reported to have a UORF between trnS(UCN) and nad1, encoding 103 amino acids; the function of the UORF was presumed to be another origin of replication [7].


Complete mitochondrial genome of the free-living earwig, Challia fletcheri (Dermaptera: Pygidicranidae) and phylogeny of Polyneoptera.

Wan X, Kim MI, Kim MJ, Kim I - PLoS ONE (2012)

Predicted secondary structure for trnY-like sequence found in intergenic spacer between trnE and trnF.The rectangular boxes indicate the respective anticodons, and the nucleotide position is indicated at the beginning and end sites of the structures.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3412835&req=5

pone-0042056-g005: Predicted secondary structure for trnY-like sequence found in intergenic spacer between trnE and trnF.The rectangular boxes indicate the respective anticodons, and the nucleotide position is indicated at the beginning and end sites of the structures.
Mentions: The second longest non-coding sequence (217 bp) is located between trnE and trnF (Figure 1), wherein 1 trnY-like sequence with a proper secondary structure and anticodon is found (Figure 5). This region is not homologous to any other gene or region of the genome. The sequence similarity between trnY-like and regular trnY gene is 58%. Another substantially large non-coding region (131 bp) is located between nad2 and trnI and can be labeled as an unidentified opening reading frame (UORF) because it comprises a start codon (TTG) infrequently described in many insects and an incomplete stop codon (TA), encoding 43 amino acids. The encoded peptide, however, is not similar to any known sequence, although an extensive GenBank database on NCBI has been searched through BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Triatoma dimidiate (Hemiptera) mitochondrial genome has been reported to have a UORF between trnS(UCN) and nad1, encoding 103 amino acids; the function of the UORF was presumed to be another origin of replication [7].

Bottom Line: We sequenced the complete mitochondrial genome of the free-living earwig, Challia fletcheri, compared its genomic features to other available mitochondrial sequences from polyneopterous insects.The reversal pattern of skewness is explained in terms of inversion of replication origin.All phylogenetic analyses consistently placed Dermaptera as the sister to Plecoptera, leaving them as the most basal lineage of Polyneoptera or sister to Ephemeroptera, and placed Odonata consistently as the most basal lineage of the Pterygota.

View Article: PubMed Central - PubMed

Affiliation: College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Republic of Korea.

ABSTRACT
The insect order Dermaptera, belonging to Polyneoptera, includes ∼2,000 extant species, but no dermapteran mitochondrial genome has been sequenced. We sequenced the complete mitochondrial genome of the free-living earwig, Challia fletcheri, compared its genomic features to other available mitochondrial sequences from polyneopterous insects. In addition, the Dermaptera, together with the other known polyneopteran mitochondrial genome sequences (protein coding, ribosomal RNA, and transfer RNA genes), were employed to understand the phylogeny of Polyneoptera, one of the least resolved insect phylogenies, with emphasis on the placement of Dermaptera. The complete mitochondrial genome of C. fletcheri presents the following several unusual features: the longest size in insects is 20,456 bp; it harbors the largest tandem repeat units (TRU) among insects; it displays T- and G-skewness on the major strand and A- and C-skewness on the minor strand, which is a reversal of the general pattern found in most insect mitochondrial genomes, and it possesses a unique gene arrangement characterized by a series of gene translocations and/or inversions. The reversal pattern of skewness is explained in terms of inversion of replication origin. All phylogenetic analyses consistently placed Dermaptera as the sister to Plecoptera, leaving them as the most basal lineage of Polyneoptera or sister to Ephemeroptera, and placed Odonata consistently as the most basal lineage of the Pterygota.

Show MeSH
Related in: MedlinePlus