Limits...
MicroRNA-30b-mediated regulation of catalase expression in human ARPE-19 cells.

Haque R, Chun E, Howell JC, Sengupta T, Chen D, Kim H - PLoS ONE (2012)

Bottom Line: Here, we demonstrated that a sublethal dose of H(2)O(2) (200 µM) up-regulated the expression of miR-30b, a member of the miR-30 family, which inhibited the expression of endogenous catalase both at the transcript and protein levels.However, antisense (antagomirs) of miR-30b was not only found to suppress the miR-30b mimics-mediated inhibitions, but also to dramatically increase the expression of catalase even under an oxidant environment.We propose that a microRNA antisense approach could enhance cytoprotective mechanisms against oxidative stress by increasing the antioxidant defense system.

View Article: PubMed Central - PubMed

Affiliation: Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, United States of America. rhaque@emory.edu

ABSTRACT

Background: Oxidative injury to retinal pigment epithelium (RPE) and retinal photoreceptors has been linked to a number of retinal diseases, including age-related macular degeneration (AMD). Reactive oxygen species (ROS)-mediated gene expression has been extensively studied at transcriptional levels. Also, the post-transcriptional control of gene expression at the level of translational regulation has been recently reported. However, the microRNA (miRNA/miR)-mediated post-transcriptional regulation in human RPE cells has not been thoroughly looked at. Increasing evidence points to a potential role of miRNAs in diverse physiological processes.

Methodology/principal findings: We demonstrated for the first time in a human retinal pigment epithelial cell line (ARPE-19) that the post-transcriptional control of gene expression via miRNA modulation regulates human catalase, an important and potent component of cell's antioxidant defensive network, which detoxifies hydrogen peroxide (H(2)O(2)) radicals. Exposure to several stress-inducing agents including H(2)O(2) has been reported to alter miRNA expression profile. Here, we demonstrated that a sublethal dose of H(2)O(2) (200 µM) up-regulated the expression of miR-30b, a member of the miR-30 family, which inhibited the expression of endogenous catalase both at the transcript and protein levels. However, antisense (antagomirs) of miR-30b was not only found to suppress the miR-30b mimics-mediated inhibitions, but also to dramatically increase the expression of catalase even under an oxidant environment.

Conclusions/significance: We propose that a microRNA antisense approach could enhance cytoprotective mechanisms against oxidative stress by increasing the antioxidant defense system.

Show MeSH

Related in: MedlinePlus

The human catalase 3′-UTR contains one putative miRNA binding site for the members of miR-30 family.Panel A: Complimentarity between the members of miR-30 family and the putative human catalase 3′-UTR site targeted (318–324 bp downstream from the human catalase stop codon). Panel B: The potential binding sequences for miR-30b within the catalase 3′-UTR of human (H. sapiens), chimpanzee (P. troglodytes), rhesus monkey (M. mulatta), gibbon (N. leucogenys), cow (B. taurus), and giant panda (A. melanoleuca). The 8 bp seed sequences of miR-30 and the putative target site in catalase 3′-UTR in both the panels are highlighted in bold.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3412823&req=5

pone-0042542-g001: The human catalase 3′-UTR contains one putative miRNA binding site for the members of miR-30 family.Panel A: Complimentarity between the members of miR-30 family and the putative human catalase 3′-UTR site targeted (318–324 bp downstream from the human catalase stop codon). Panel B: The potential binding sequences for miR-30b within the catalase 3′-UTR of human (H. sapiens), chimpanzee (P. troglodytes), rhesus monkey (M. mulatta), gibbon (N. leucogenys), cow (B. taurus), and giant panda (A. melanoleuca). The 8 bp seed sequences of miR-30 and the putative target site in catalase 3′-UTR in both the panels are highlighted in bold.

Mentions: Using TargetScan and miRanda algorithms, the human catalase was predicted to be the putative target of miR-30. In silico analysis of these databases demonstrated that the human catalase 3′-UTR harbors a single binding site for the members of miR-30 family. For this study we have focused on miR-30b that may target the human catalase 3′-UTR since this site is conserved across species. The bioinformatic analysis for the target site of miR-30 in catalase 3′-UTR is shown in Figure 1.


MicroRNA-30b-mediated regulation of catalase expression in human ARPE-19 cells.

Haque R, Chun E, Howell JC, Sengupta T, Chen D, Kim H - PLoS ONE (2012)

The human catalase 3′-UTR contains one putative miRNA binding site for the members of miR-30 family.Panel A: Complimentarity between the members of miR-30 family and the putative human catalase 3′-UTR site targeted (318–324 bp downstream from the human catalase stop codon). Panel B: The potential binding sequences for miR-30b within the catalase 3′-UTR of human (H. sapiens), chimpanzee (P. troglodytes), rhesus monkey (M. mulatta), gibbon (N. leucogenys), cow (B. taurus), and giant panda (A. melanoleuca). The 8 bp seed sequences of miR-30 and the putative target site in catalase 3′-UTR in both the panels are highlighted in bold.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3412823&req=5

pone-0042542-g001: The human catalase 3′-UTR contains one putative miRNA binding site for the members of miR-30 family.Panel A: Complimentarity between the members of miR-30 family and the putative human catalase 3′-UTR site targeted (318–324 bp downstream from the human catalase stop codon). Panel B: The potential binding sequences for miR-30b within the catalase 3′-UTR of human (H. sapiens), chimpanzee (P. troglodytes), rhesus monkey (M. mulatta), gibbon (N. leucogenys), cow (B. taurus), and giant panda (A. melanoleuca). The 8 bp seed sequences of miR-30 and the putative target site in catalase 3′-UTR in both the panels are highlighted in bold.
Mentions: Using TargetScan and miRanda algorithms, the human catalase was predicted to be the putative target of miR-30. In silico analysis of these databases demonstrated that the human catalase 3′-UTR harbors a single binding site for the members of miR-30 family. For this study we have focused on miR-30b that may target the human catalase 3′-UTR since this site is conserved across species. The bioinformatic analysis for the target site of miR-30 in catalase 3′-UTR is shown in Figure 1.

Bottom Line: Here, we demonstrated that a sublethal dose of H(2)O(2) (200 µM) up-regulated the expression of miR-30b, a member of the miR-30 family, which inhibited the expression of endogenous catalase both at the transcript and protein levels.However, antisense (antagomirs) of miR-30b was not only found to suppress the miR-30b mimics-mediated inhibitions, but also to dramatically increase the expression of catalase even under an oxidant environment.We propose that a microRNA antisense approach could enhance cytoprotective mechanisms against oxidative stress by increasing the antioxidant defense system.

View Article: PubMed Central - PubMed

Affiliation: Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, United States of America. rhaque@emory.edu

ABSTRACT

Background: Oxidative injury to retinal pigment epithelium (RPE) and retinal photoreceptors has been linked to a number of retinal diseases, including age-related macular degeneration (AMD). Reactive oxygen species (ROS)-mediated gene expression has been extensively studied at transcriptional levels. Also, the post-transcriptional control of gene expression at the level of translational regulation has been recently reported. However, the microRNA (miRNA/miR)-mediated post-transcriptional regulation in human RPE cells has not been thoroughly looked at. Increasing evidence points to a potential role of miRNAs in diverse physiological processes.

Methodology/principal findings: We demonstrated for the first time in a human retinal pigment epithelial cell line (ARPE-19) that the post-transcriptional control of gene expression via miRNA modulation regulates human catalase, an important and potent component of cell's antioxidant defensive network, which detoxifies hydrogen peroxide (H(2)O(2)) radicals. Exposure to several stress-inducing agents including H(2)O(2) has been reported to alter miRNA expression profile. Here, we demonstrated that a sublethal dose of H(2)O(2) (200 µM) up-regulated the expression of miR-30b, a member of the miR-30 family, which inhibited the expression of endogenous catalase both at the transcript and protein levels. However, antisense (antagomirs) of miR-30b was not only found to suppress the miR-30b mimics-mediated inhibitions, but also to dramatically increase the expression of catalase even under an oxidant environment.

Conclusions/significance: We propose that a microRNA antisense approach could enhance cytoprotective mechanisms against oxidative stress by increasing the antioxidant defense system.

Show MeSH
Related in: MedlinePlus