Limits...
The impact of aging and atherosclerotic risk factors on transthoracic coronary flow reserve in subjects with normal coronary angiography.

Galderisi M, Rigo F, Gherardi S, Cortigiani L, Santoro C, Sicari R, Picano E - Cardiovasc Ultrasound (2012)

Bottom Line: CFR was progressively reduced with aging (1st quartile: 3.01 ± 0.69, 4th quartile: 2.39 ± 0.49, p < 0.001).This was mainly due to a gradual increase of resting velocities (1st quartile = 26.3 ± 6.1 cm/s, 4th quartile = 30.2 ± 6.4 cm/s, p < 0.001) while the reduction of hyperemic velocities remained unaffected (1st quartile = 77.7 ± 18.9 cm/s, 4th quartile = 70.9 ± 18.4 cm/s, NS).Aging reduces coronary flow reserve in patients with angiographically normal coronary arteries due to a gradual increase of resting coronary flow velocity.

View Article: PubMed Central - HTML - PubMed

Affiliation: Division of Cardioangiology, Department of Clinical and Experimental Medicine, Federico II University Hospital, Naples, Italy. mgalderi@unina.it

ABSTRACT
Age may affect coronary flow reserve (CFR) especially in subjects with atherosclerotic risk factors (ARFs). The aim of this prospective, multicenter, observational study was to determine the effects of aging on CFR in patients with normal epicardial coronary arteries and ARFs. Three-hundred-thirty-five subjects (mean age = 61 years) with at least one ARF but normal coronary angiography underwent high-dose dipyridamole stress-echo with Doppler evaluation of left anterior descending artery. CFR was calculated as the ratio between hyperemic and resting coronary diastolic peak velocities. Patients were divided in age quartiles. CFR was progressively reduced with aging (1st quartile: 3.01 ± 0.69, 4th quartile: 2.39 ± 0.49, p < 0.001). This was mainly due to a gradual increase of resting velocities (1st quartile = 26.3 ± 6.1 cm/s, 4th quartile = 30.2 ± 6.4 cm/s, p < 0.001) while the reduction of hyperemic velocities remained unaffected (1st quartile = 77.7 ± 18.9 cm/s, 4th quartile = 70.9 ± 18.4 cm/s, NS). When age quartiles and ARFs were entered into a regression model, third and fourth age quartile (p < 0.0005 and p < 0.0001 respectively), left ventricular mass index (p < 0.0001), diastolic blood pressure (p < 0.001), total cholesterol (p < 0.002), fasting blood glucose (p < 0.01) and male gender (p < 0.05) were independent determinants of CFR in the whole population. Aging reduces coronary flow reserve in patients with angiographically normal coronary arteries due to a gradual increase of resting coronary flow velocity. CFR is also affected by atherosclerotic risk factors and left ventricular hypertrophy.

Show MeSH

Related in: MedlinePlus

Correlation between CFR and age. CFR decreases progressively with aging.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3403974&req=5

Figure 2: Correlation between CFR and age. CFR decreases progressively with aging.

Mentions: In the pooled population age was correlated positively with coronary flow velocity at rest (r = 0.20, p < 0.0001) and negatively with hyperemic coronary flow velocity (r = −0.13, p < 0.02) (Figure 1). Age was negatively correlated with CFR (r = −0.41, p < 0.0001) (Figure 2) and was also related with systolic BP (r = 0.34), diastolic BP (r = 0.37) and mean BP (r = 0.39) (all p < 0.0001), with total blood cholesterol (r = 0.27) (p < 0.0001), fasting blood glucose (r = 0.18) (p < 0.001), body mass index (r = 0.12, p = 0.03) and LV mass index (r = 0.43, p < 0.0001).


The impact of aging and atherosclerotic risk factors on transthoracic coronary flow reserve in subjects with normal coronary angiography.

Galderisi M, Rigo F, Gherardi S, Cortigiani L, Santoro C, Sicari R, Picano E - Cardiovasc Ultrasound (2012)

Correlation between CFR and age. CFR decreases progressively with aging.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3403974&req=5

Figure 2: Correlation between CFR and age. CFR decreases progressively with aging.
Mentions: In the pooled population age was correlated positively with coronary flow velocity at rest (r = 0.20, p < 0.0001) and negatively with hyperemic coronary flow velocity (r = −0.13, p < 0.02) (Figure 1). Age was negatively correlated with CFR (r = −0.41, p < 0.0001) (Figure 2) and was also related with systolic BP (r = 0.34), diastolic BP (r = 0.37) and mean BP (r = 0.39) (all p < 0.0001), with total blood cholesterol (r = 0.27) (p < 0.0001), fasting blood glucose (r = 0.18) (p < 0.001), body mass index (r = 0.12, p = 0.03) and LV mass index (r = 0.43, p < 0.0001).

Bottom Line: CFR was progressively reduced with aging (1st quartile: 3.01 ± 0.69, 4th quartile: 2.39 ± 0.49, p < 0.001).This was mainly due to a gradual increase of resting velocities (1st quartile = 26.3 ± 6.1 cm/s, 4th quartile = 30.2 ± 6.4 cm/s, p < 0.001) while the reduction of hyperemic velocities remained unaffected (1st quartile = 77.7 ± 18.9 cm/s, 4th quartile = 70.9 ± 18.4 cm/s, NS).Aging reduces coronary flow reserve in patients with angiographically normal coronary arteries due to a gradual increase of resting coronary flow velocity.

View Article: PubMed Central - HTML - PubMed

Affiliation: Division of Cardioangiology, Department of Clinical and Experimental Medicine, Federico II University Hospital, Naples, Italy. mgalderi@unina.it

ABSTRACT
Age may affect coronary flow reserve (CFR) especially in subjects with atherosclerotic risk factors (ARFs). The aim of this prospective, multicenter, observational study was to determine the effects of aging on CFR in patients with normal epicardial coronary arteries and ARFs. Three-hundred-thirty-five subjects (mean age = 61 years) with at least one ARF but normal coronary angiography underwent high-dose dipyridamole stress-echo with Doppler evaluation of left anterior descending artery. CFR was calculated as the ratio between hyperemic and resting coronary diastolic peak velocities. Patients were divided in age quartiles. CFR was progressively reduced with aging (1st quartile: 3.01 ± 0.69, 4th quartile: 2.39 ± 0.49, p < 0.001). This was mainly due to a gradual increase of resting velocities (1st quartile = 26.3 ± 6.1 cm/s, 4th quartile = 30.2 ± 6.4 cm/s, p < 0.001) while the reduction of hyperemic velocities remained unaffected (1st quartile = 77.7 ± 18.9 cm/s, 4th quartile = 70.9 ± 18.4 cm/s, NS). When age quartiles and ARFs were entered into a regression model, third and fourth age quartile (p < 0.0005 and p < 0.0001 respectively), left ventricular mass index (p < 0.0001), diastolic blood pressure (p < 0.001), total cholesterol (p < 0.002), fasting blood glucose (p < 0.01) and male gender (p < 0.05) were independent determinants of CFR in the whole population. Aging reduces coronary flow reserve in patients with angiographically normal coronary arteries due to a gradual increase of resting coronary flow velocity. CFR is also affected by atherosclerotic risk factors and left ventricular hypertrophy.

Show MeSH
Related in: MedlinePlus