Limits...
Right ventricular dysfunction following continuous flow left ventricular assist device placement in 51 patients: predicators and outcomes.

Neragi-Miandoab S, Goldstein D, Bello R, Michler R, D'Alessandro D - J Cardiothorac Surg (2012)

Bottom Line: Right ventricular (RV) dysfunction following implantation of a left ventricular assist device (LVAD) is a serious condition and is associated with increased mortality.Preoperative RV dysfunction was a significant predictor of postoperative right heart dysfunction following implantation of an LVAD (p = 0.001).The adjustment of septal deviation through gradual increase of the LVAD flow can prevent the acute RV dysfunction following LVAD placement.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Cardiothoracic Surgery, Albert Einstein College of Medicine, New York, NY 10467, USA. sneragi@yahoo.com

ABSTRACT

Background: Right ventricular (RV) dysfunction following implantation of a left ventricular assist device (LVAD) is a serious condition and is associated with increased mortality.

Methods: The aim of the study is to investigate the significance of pre-existing RV dysfunction, tricuspid valve (TV) insufficiency, and the severity of septal deviation following LVAD implantation on RV dysfunction, as well as the outcome and short-term complications in 51 patients from June 2006 to August 2010. Student t test was used to compare the data and estimate the p value.

Results: Mean age was 55.1 ± 13, with a male to female ratio of 3.25. The 30-day mortality was 13.7% (7/51 patients), and the overall mortality was 23.5% (12/51 patients). Meanwhile, 21 patients (21/51; 41.2%) have undergone orthotopic heart transplantation. The mean time of support was 314.5±235 days with a median of 240 days at the time of closing this study. Echocardiographic evaluation of RV function pre- and post-implantation of an LVAD demonstrated septal deviation towards the left ventricle in immediate postoperative phase, which correlated with acute RV dysfunction (p = 0.002). Preoperative RV dysfunction was a significant predictor of postoperative right heart dysfunction following implantation of an LVAD (p = 0.001).

Conclusion: Preoperative RV dysfunction is a predictor of RV failure in LVAD patients. The adjustment of septal deviation through gradual increase of the LVAD flow can prevent the acute RV dysfunction following LVAD placement.

Show MeSH
Correlation of preoperative RV dysfunction vs postoperative RV failure. A preoperative RV dysfunction predicated the postoperative RV failure following LVAD implantation (p = 0.002).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3403957&req=5

Figure 1: Correlation of preoperative RV dysfunction vs postoperative RV failure. A preoperative RV dysfunction predicated the postoperative RV failure following LVAD implantation (p = 0.002).

Mentions: The mean age was 55.1 ± 13 years, with a male to female ratio of 3.25. The etiology included nonischemic dilatative cardiomyopathy (n = 17), ischemic cardiomyopathy (n = 27), postcardiac surgical shock (PCCS, n = 4), valvular (n = 1), and post partum cardiomyopathy (n = 2). The implanted devices included HeartMate II (n = 43), Ventriassist (n = 4), and HeartWare (n = 4). Additional procedures included tricuspid valve repair (n = 8), closure of PFO (n = 5), and aortic valve replacement (n = 5). The indication for assist device implantation included destination therapy (DT, n = 17), bridge to transplantation (BTT, n = 17), and potential bridge to transplantation (PBT, n = 17). The mean preoperative systolic pulmonary artery pressure (PAP) was 51.8±16.6 mmHg, and the pulmonary vascular resistance (PVR) was 3.58±1.83 woods. Preoperative cardiac index (CI) was 2.1±0.6, left ventricular ejection fraction (LVEF) was 21.97%±7.56%, with a median of 20%, and the preoperative RV work index was 564±372. Eighteen of 51 patients had intra-aortic balloon pump (IABP) in place. The intermacs level was 2.8±3.3, and the mean time of support was 314.5±235 with a median of 240 days at the time of closing this study. The preoperative RV dysfunction was diagnosed echocardiographically in 33 patients (65%), which correlated with postoperative worsening RV dysfunction in 32 patients (p = 0.001)(Figure 1). The preoperative TV regurgitation was seen in 31 of 37 patients in whom the TV was evaluated echocardiographically in preoperative period. The correlation between TV regurgitation and postoperative RV dysfunction was statistically not significant, which may be due to small sample size (p = 0.2). Septal position was evaluated in 49 patients, while a deviation towards the left ventricle was seen in 17 patients (34%), which correlated with RV dysfunction (p = 0.002) indicating the significant role of the septum in RV function. The 30-day mortality was 13.7% (7/51 patients), and the overall mortality since 6/13/2006 until 1/11/2010 was 23.5% (12/51 patients). Twenty-one patients (21/51; 41.2%) have undergone orthotopic heart transplantation successfully. The initial post-implant length of stay (LOS) was 34.8±22.9 days, and LOS in CSICU was 14.7±16.2 days (median 9 days). Twenty-six patients (51%) were discharged home and 25 patients (49%) to a rehabilitation facility. The average days spent out off hospital until the next admission was 86.7±139 and 90.9±154 day for patients who were discharged home or rehab (Table 1), respectively (the difference is statistically not significant).


Right ventricular dysfunction following continuous flow left ventricular assist device placement in 51 patients: predicators and outcomes.

Neragi-Miandoab S, Goldstein D, Bello R, Michler R, D'Alessandro D - J Cardiothorac Surg (2012)

Correlation of preoperative RV dysfunction vs postoperative RV failure. A preoperative RV dysfunction predicated the postoperative RV failure following LVAD implantation (p = 0.002).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3403957&req=5

Figure 1: Correlation of preoperative RV dysfunction vs postoperative RV failure. A preoperative RV dysfunction predicated the postoperative RV failure following LVAD implantation (p = 0.002).
Mentions: The mean age was 55.1 ± 13 years, with a male to female ratio of 3.25. The etiology included nonischemic dilatative cardiomyopathy (n = 17), ischemic cardiomyopathy (n = 27), postcardiac surgical shock (PCCS, n = 4), valvular (n = 1), and post partum cardiomyopathy (n = 2). The implanted devices included HeartMate II (n = 43), Ventriassist (n = 4), and HeartWare (n = 4). Additional procedures included tricuspid valve repair (n = 8), closure of PFO (n = 5), and aortic valve replacement (n = 5). The indication for assist device implantation included destination therapy (DT, n = 17), bridge to transplantation (BTT, n = 17), and potential bridge to transplantation (PBT, n = 17). The mean preoperative systolic pulmonary artery pressure (PAP) was 51.8±16.6 mmHg, and the pulmonary vascular resistance (PVR) was 3.58±1.83 woods. Preoperative cardiac index (CI) was 2.1±0.6, left ventricular ejection fraction (LVEF) was 21.97%±7.56%, with a median of 20%, and the preoperative RV work index was 564±372. Eighteen of 51 patients had intra-aortic balloon pump (IABP) in place. The intermacs level was 2.8±3.3, and the mean time of support was 314.5±235 with a median of 240 days at the time of closing this study. The preoperative RV dysfunction was diagnosed echocardiographically in 33 patients (65%), which correlated with postoperative worsening RV dysfunction in 32 patients (p = 0.001)(Figure 1). The preoperative TV regurgitation was seen in 31 of 37 patients in whom the TV was evaluated echocardiographically in preoperative period. The correlation between TV regurgitation and postoperative RV dysfunction was statistically not significant, which may be due to small sample size (p = 0.2). Septal position was evaluated in 49 patients, while a deviation towards the left ventricle was seen in 17 patients (34%), which correlated with RV dysfunction (p = 0.002) indicating the significant role of the septum in RV function. The 30-day mortality was 13.7% (7/51 patients), and the overall mortality since 6/13/2006 until 1/11/2010 was 23.5% (12/51 patients). Twenty-one patients (21/51; 41.2%) have undergone orthotopic heart transplantation successfully. The initial post-implant length of stay (LOS) was 34.8±22.9 days, and LOS in CSICU was 14.7±16.2 days (median 9 days). Twenty-six patients (51%) were discharged home and 25 patients (49%) to a rehabilitation facility. The average days spent out off hospital until the next admission was 86.7±139 and 90.9±154 day for patients who were discharged home or rehab (Table 1), respectively (the difference is statistically not significant).

Bottom Line: Right ventricular (RV) dysfunction following implantation of a left ventricular assist device (LVAD) is a serious condition and is associated with increased mortality.Preoperative RV dysfunction was a significant predictor of postoperative right heart dysfunction following implantation of an LVAD (p = 0.001).The adjustment of septal deviation through gradual increase of the LVAD flow can prevent the acute RV dysfunction following LVAD placement.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Cardiothoracic Surgery, Albert Einstein College of Medicine, New York, NY 10467, USA. sneragi@yahoo.com

ABSTRACT

Background: Right ventricular (RV) dysfunction following implantation of a left ventricular assist device (LVAD) is a serious condition and is associated with increased mortality.

Methods: The aim of the study is to investigate the significance of pre-existing RV dysfunction, tricuspid valve (TV) insufficiency, and the severity of septal deviation following LVAD implantation on RV dysfunction, as well as the outcome and short-term complications in 51 patients from June 2006 to August 2010. Student t test was used to compare the data and estimate the p value.

Results: Mean age was 55.1 ± 13, with a male to female ratio of 3.25. The 30-day mortality was 13.7% (7/51 patients), and the overall mortality was 23.5% (12/51 patients). Meanwhile, 21 patients (21/51; 41.2%) have undergone orthotopic heart transplantation. The mean time of support was 314.5±235 days with a median of 240 days at the time of closing this study. Echocardiographic evaluation of RV function pre- and post-implantation of an LVAD demonstrated septal deviation towards the left ventricle in immediate postoperative phase, which correlated with acute RV dysfunction (p = 0.002). Preoperative RV dysfunction was a significant predictor of postoperative right heart dysfunction following implantation of an LVAD (p = 0.001).

Conclusion: Preoperative RV dysfunction is a predictor of RV failure in LVAD patients. The adjustment of septal deviation through gradual increase of the LVAD flow can prevent the acute RV dysfunction following LVAD placement.

Show MeSH