Limits...
Oversampling in the computed tomography measurements applied for bone structure studies as a method of spatial resolution improvement.

Tatoń G, Rokita E, Rok T, Beckmann F - Pol J Radiol (2012)

Bottom Line: Original, virtually scanned and recovered images resolutions were compared with the use of modulation transfer function (MTF).The MTF analysis showed resolution improvement.Despite this disadvantage the proposed method can be successfully used in practice, especially in the trabecular bone studies because of high contrast between trabeculae and intertrabecular spaces.

View Article: PubMed Central - PubMed

Affiliation: Department of Biophysics, Jagiellonian University Medical College, Kraków, Poland.

ABSTRACT

Background: Our purpose was to check the potential ability of oversampling as a method for computed tomography axial resolution improvement. The method of achieving isotropic and fine resolution, when the scanning system is characterized by anisotropic resolutions is proposed. In case of typical clinical system the axial resolution is much lower than the planar one. The idea relies on the scanning with a wide overlapping layers and subsequent resolution recovery on the level of scanning step.

Material/methods: Simulated three-dimensional images, as well as the real microtomographic images of rat femoral bone were used in proposed solution tests. Original high resolution images were virtually scanned with a wide beam and a small step in order to simulate the real measurements. The low resolution image series were subsequently processed in order to back to the original fine one. Original, virtually scanned and recovered images resolutions were compared with the use of modulation transfer function (MTF).

Results/conclusions: A good ability of oversampling as a method for the resolution recovery was showed. It was confirmed by comparing the resolving powers after and before resolution recovery. The MTF analysis showed resolution improvement. The resolution improvement was achieved but the image noise raised considerably, which is clearly visible on image histograms. Despite this disadvantage the proposed method can be successfully used in practice, especially in the trabecular bone studies because of high contrast between trabeculae and intertrabecular spaces.

No MeSH data available.


MTF calculated for the original edge image compared to the MTF of the image obtained after resolution deterioration with the wide beam and recovery.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3403796&req=5

f4-poljradiol-77-2-14: MTF calculated for the original edge image compared to the MTF of the image obtained after resolution deterioration with the wide beam and recovery.

Mentions: The most interesting thing is to compare the original edge image resolution with the resolution after the Z resolution recovery. In order to do that the MTFs of both images were compared for different k values. An example for k=5 is shown in Figure 4.


Oversampling in the computed tomography measurements applied for bone structure studies as a method of spatial resolution improvement.

Tatoń G, Rokita E, Rok T, Beckmann F - Pol J Radiol (2012)

MTF calculated for the original edge image compared to the MTF of the image obtained after resolution deterioration with the wide beam and recovery.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3403796&req=5

f4-poljradiol-77-2-14: MTF calculated for the original edge image compared to the MTF of the image obtained after resolution deterioration with the wide beam and recovery.
Mentions: The most interesting thing is to compare the original edge image resolution with the resolution after the Z resolution recovery. In order to do that the MTFs of both images were compared for different k values. An example for k=5 is shown in Figure 4.

Bottom Line: Original, virtually scanned and recovered images resolutions were compared with the use of modulation transfer function (MTF).The MTF analysis showed resolution improvement.Despite this disadvantage the proposed method can be successfully used in practice, especially in the trabecular bone studies because of high contrast between trabeculae and intertrabecular spaces.

View Article: PubMed Central - PubMed

Affiliation: Department of Biophysics, Jagiellonian University Medical College, Kraków, Poland.

ABSTRACT

Background: Our purpose was to check the potential ability of oversampling as a method for computed tomography axial resolution improvement. The method of achieving isotropic and fine resolution, when the scanning system is characterized by anisotropic resolutions is proposed. In case of typical clinical system the axial resolution is much lower than the planar one. The idea relies on the scanning with a wide overlapping layers and subsequent resolution recovery on the level of scanning step.

Material/methods: Simulated three-dimensional images, as well as the real microtomographic images of rat femoral bone were used in proposed solution tests. Original high resolution images were virtually scanned with a wide beam and a small step in order to simulate the real measurements. The low resolution image series were subsequently processed in order to back to the original fine one. Original, virtually scanned and recovered images resolutions were compared with the use of modulation transfer function (MTF).

Results/conclusions: A good ability of oversampling as a method for the resolution recovery was showed. It was confirmed by comparing the resolving powers after and before resolution recovery. The MTF analysis showed resolution improvement. The resolution improvement was achieved but the image noise raised considerably, which is clearly visible on image histograms. Despite this disadvantage the proposed method can be successfully used in practice, especially in the trabecular bone studies because of high contrast between trabeculae and intertrabecular spaces.

No MeSH data available.