Limits...
Dual-source computed tomography angiography and intravascular ultrasound assessment of restenosis in patients after coronary stenting for bifurcation left main stenosis: a pilot study.

Veselka J, Cadová P, Adla T, Zemánek D - Arch Med Sci (2012)

Bottom Line: There was moderate to good correlation between the minimal luminal area (MLA), measured by CTCA and IVUS for LM, the left anterior descending artery (LAD) and the left circumflex artery (LCx) (r=0.64, p<0.01; r=0.49, p=0.03; r=0.76, p<0.01, respectively).A Bland-Altman analysis showed that the MLAs measured by CTCA were underestimated in all segments (mean difference 1.67 ±2.2 mm(2) for LM; 2.0 ±2.0 mm(2) for LAD; 1.79 ±1.79 mm(2) for LCx).The area under the curve for all analysed segments was 0.73.

View Article: PubMed Central - PubMed

Affiliation: Department of Cardiology, 2 Medical School, Charles University, University Hospital Motol, Prague, Czech Republic.

ABSTRACT

Introduction: The aim of this prospective study was to evaluate the diagnostic accuracy of dual-source computed tomography coronary angiography (CTCA) compared to intravascular ultrasound (IVUS) for the detection of restenosis in patients who underwent coronary stenting for bifurcation left main (LM) stenosis.

Material and methods: Twenty-four patients underwent percutaneous intervention of the LM and were subsequently examined (median 9.2 months after procedure) using IVUS and CTCA for the detection of restenosis.

Results: Significant restenosis was detected according to IVUS examination in 6 patients (25%) and 8 segments (13%). Based on segment analysis, sensitivity, specificity, positive and negative predictive values of CTCA for the detection of restenosis were 89%, 68%, 32%, 97%, respectively. There was moderate to good correlation between the minimal luminal area (MLA), measured by CTCA and IVUS for LM, the left anterior descending artery (LAD) and the left circumflex artery (LCx) (r=0.64, p<0.01; r=0.49, p=0.03; r=0.76, p<0.01, respectively). A Bland-Altman analysis showed that the MLAs measured by CTCA were underestimated in all segments (mean difference 1.67 ±2.2 mm(2) for LM; 2.0 ±2.0 mm(2) for LAD; 1.79 ±1.79 mm(2) for LCx). An ROC analysis of the MLAs derived by CTCA for detecting significant stenosis was performed. The area under the curve for all analysed segments was 0.73.

Conclusions: The present study demonstrates that in patients after LM bifurcation stenting CTCA performs well in the exclusion of in-segment restenosis. However, due to the low positive predictive value of CTCA, the finding of any restenosis should be confirmed by invasive examination.

No MeSH data available.


Related in: MedlinePlus

Assessment of a coronary artery stent by CTCA. A– Longitudinal view, B– minimal luminal area measurement
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3400902&req=5

Figure 0001: Assessment of a coronary artery stent by CTCA. A– Longitudinal view, B– minimal luminal area measurement

Mentions: All CT examinations were performed on a dual-source CT scanner (Somatom Definition, Siemens Medical Solutions, Forchheim, Germany) with 70 to 100 ml of iodixanol (Iomeron, 400 mg/ml, Altana-Bracco, Germany) followed by 40 ml of saline solution [13]. Two doses of sublingual isosorbide dinitrate spray were used at the start of the examination. No β-blockers were given before examination. The examination focused on three coronary segments: the whole LM, the proximal part of the LAD and the left circumflex artery (LCx). The LAD and LCx were evaluated in 1-cm-long segments distal to the stent. Images were reconstructed with a slice thickness of 0.6 mm and reconstruction increment of 0.3 mm using a sharp convolution kernel (B46f). AqNET software (version 1.8.4.5., TeraRecon, USA) was used for the evaluation and measurements. Identification of the minimal lumen was made from longitudinal images of curved planar reconstructions and measurements of the minimal luminal area were performed manually from images perpendicular to the arterial axis (Figure 1). Data sets were analysed by a single, experienced radiologist blinded to the clinical data.


Dual-source computed tomography angiography and intravascular ultrasound assessment of restenosis in patients after coronary stenting for bifurcation left main stenosis: a pilot study.

Veselka J, Cadová P, Adla T, Zemánek D - Arch Med Sci (2012)

Assessment of a coronary artery stent by CTCA. A– Longitudinal view, B– minimal luminal area measurement
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3400902&req=5

Figure 0001: Assessment of a coronary artery stent by CTCA. A– Longitudinal view, B– minimal luminal area measurement
Mentions: All CT examinations were performed on a dual-source CT scanner (Somatom Definition, Siemens Medical Solutions, Forchheim, Germany) with 70 to 100 ml of iodixanol (Iomeron, 400 mg/ml, Altana-Bracco, Germany) followed by 40 ml of saline solution [13]. Two doses of sublingual isosorbide dinitrate spray were used at the start of the examination. No β-blockers were given before examination. The examination focused on three coronary segments: the whole LM, the proximal part of the LAD and the left circumflex artery (LCx). The LAD and LCx were evaluated in 1-cm-long segments distal to the stent. Images were reconstructed with a slice thickness of 0.6 mm and reconstruction increment of 0.3 mm using a sharp convolution kernel (B46f). AqNET software (version 1.8.4.5., TeraRecon, USA) was used for the evaluation and measurements. Identification of the minimal lumen was made from longitudinal images of curved planar reconstructions and measurements of the minimal luminal area were performed manually from images perpendicular to the arterial axis (Figure 1). Data sets were analysed by a single, experienced radiologist blinded to the clinical data.

Bottom Line: There was moderate to good correlation between the minimal luminal area (MLA), measured by CTCA and IVUS for LM, the left anterior descending artery (LAD) and the left circumflex artery (LCx) (r=0.64, p<0.01; r=0.49, p=0.03; r=0.76, p<0.01, respectively).A Bland-Altman analysis showed that the MLAs measured by CTCA were underestimated in all segments (mean difference 1.67 ±2.2 mm(2) for LM; 2.0 ±2.0 mm(2) for LAD; 1.79 ±1.79 mm(2) for LCx).The area under the curve for all analysed segments was 0.73.

View Article: PubMed Central - PubMed

Affiliation: Department of Cardiology, 2 Medical School, Charles University, University Hospital Motol, Prague, Czech Republic.

ABSTRACT

Introduction: The aim of this prospective study was to evaluate the diagnostic accuracy of dual-source computed tomography coronary angiography (CTCA) compared to intravascular ultrasound (IVUS) for the detection of restenosis in patients who underwent coronary stenting for bifurcation left main (LM) stenosis.

Material and methods: Twenty-four patients underwent percutaneous intervention of the LM and were subsequently examined (median 9.2 months after procedure) using IVUS and CTCA for the detection of restenosis.

Results: Significant restenosis was detected according to IVUS examination in 6 patients (25%) and 8 segments (13%). Based on segment analysis, sensitivity, specificity, positive and negative predictive values of CTCA for the detection of restenosis were 89%, 68%, 32%, 97%, respectively. There was moderate to good correlation between the minimal luminal area (MLA), measured by CTCA and IVUS for LM, the left anterior descending artery (LAD) and the left circumflex artery (LCx) (r=0.64, p<0.01; r=0.49, p=0.03; r=0.76, p<0.01, respectively). A Bland-Altman analysis showed that the MLAs measured by CTCA were underestimated in all segments (mean difference 1.67 ±2.2 mm(2) for LM; 2.0 ±2.0 mm(2) for LAD; 1.79 ±1.79 mm(2) for LCx). An ROC analysis of the MLAs derived by CTCA for detecting significant stenosis was performed. The area under the curve for all analysed segments was 0.73.

Conclusions: The present study demonstrates that in patients after LM bifurcation stenting CTCA performs well in the exclusion of in-segment restenosis. However, due to the low positive predictive value of CTCA, the finding of any restenosis should be confirmed by invasive examination.

No MeSH data available.


Related in: MedlinePlus