Limits...
Making robust policy decisions using global biodiversity indicators.

Nicholson E, Collen B, Barausse A, Blanchard JL, Costelloe BT, Sullivan KM, Underwood FM, Burn RW, Fritz S, Jones JP, McRae L, Possingham HP, Milner-Gulland EJ - PLoS ONE (2012)

Bottom Line: In order to influence global policy effectively, conservation scientists need to be able to provide robust predictions of the impact of alternative policies on biodiversity and measure progress towards goals using reliable indicators.Our results support the need for further research on how to use predictive models and indicators to credibly track trends and inform policy.To be useful and relevant, scientists must make testable predictions about the impact of global policy on biodiversity to ensure that targets such as those set at Nagoya catalyse effective and measurable change.

View Article: PubMed Central - PubMed

Affiliation: Department of Life Sciences, Imperial College London, Berkshire, United Kingdom. emily.nicholson@unimelb.edu.au

ABSTRACT
In order to influence global policy effectively, conservation scientists need to be able to provide robust predictions of the impact of alternative policies on biodiversity and measure progress towards goals using reliable indicators. We present a framework for using biodiversity indicators predictively to inform policy choices at a global level. The approach is illustrated with two case studies in which we project forwards the impacts of feasible policies on trends in biodiversity and in relevant indicators. The policies are based on targets agreed at the Convention on Biological Diversity (CBD) meeting in Nagoya in October 2010. The first case study compares protected area policies for African mammals, assessed using the Red List Index; the second example uses the Living Planet Index to assess the impact of a complete halt, versus a reduction, in bottom trawling. In the protected areas example, we find that the indicator can aid in decision-making because it is able to differentiate between the impacts of the different policies. In the bottom trawling example, the indicator exhibits some counter-intuitive behaviour, due to over-representation of some taxonomic and functional groups in the indicator, and contrasting impacts of the policies on different groups caused by trophic interactions. Our results support the need for further research on how to use predictive models and indicators to credibly track trends and inform policy. To be useful and relevant, scientists must make testable predictions about the impact of global policy on biodiversity to ensure that targets such as those set at Nagoya catalyse effective and measurable change.

Show MeSH
The indicator-policy cycle, a framework for using indicators to inform policy:Evaluation of the problem at hand involves defining broad goals of policy, developing models of the system, selecting indicators that reflect the changes of interest, defining specific targets that can be measured with the indicators, and defining a set of actions or policies to achieve the targets, which are assessed using the models. After evaluation, actions are chosen and implemented, with resultant change on biodiversity and drivers of loss, which may also be affected by other external drivers unrelated to the actions; change is monitored with the indicators and assessed against the targets, leading to re-evaluation. Key sources of uncertainty and potential failure throughout the cycle are numbered and discussed in detail in Table S1: 1) assumptions in the evaluation process; 2) the link between evaluation and selection of actions; 3) the link between selection and implementation of actions; 4) the impact of the action differing from the anticipated impact; 5) the link between biodiversity change and indicator change; 6) the link between indicator change and target assessment; and 7) mismatches in temporal and spatial scales throughout the cycle.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3399804&req=5

pone-0041128-g001: The indicator-policy cycle, a framework for using indicators to inform policy:Evaluation of the problem at hand involves defining broad goals of policy, developing models of the system, selecting indicators that reflect the changes of interest, defining specific targets that can be measured with the indicators, and defining a set of actions or policies to achieve the targets, which are assessed using the models. After evaluation, actions are chosen and implemented, with resultant change on biodiversity and drivers of loss, which may also be affected by other external drivers unrelated to the actions; change is monitored with the indicators and assessed against the targets, leading to re-evaluation. Key sources of uncertainty and potential failure throughout the cycle are numbered and discussed in detail in Table S1: 1) assumptions in the evaluation process; 2) the link between evaluation and selection of actions; 3) the link between selection and implementation of actions; 4) the impact of the action differing from the anticipated impact; 5) the link between biodiversity change and indicator change; 6) the link between indicator change and target assessment; and 7) mismatches in temporal and spatial scales throughout the cycle.

Mentions: To make sensible and robust policy decisions, an explicit understanding of the linkages between action and outcomes is needed. This requires the impacts of policies to be projected forward using models, ideally as part of an adaptive decision-making process that includes defining targets and monitoring the results, which we term an “indicator-policy cycle” (Figure 1). Models can be used by policy-makers to assess the impact of their decisions, and to learn and evaluate both our understanding of the relationship between policy action and environmental change, and the appropriateness of the indicators for measuring change. Indicators are a key link in the cycle, as the means by which policy outcomes are communicated and evaluated. However, there has been very little evaluation of the robustness of indicators in representing underlying biodiversity trends of interest, with Branch et al. [13] and Fulton et al. [14] providing notable exceptions.


Making robust policy decisions using global biodiversity indicators.

Nicholson E, Collen B, Barausse A, Blanchard JL, Costelloe BT, Sullivan KM, Underwood FM, Burn RW, Fritz S, Jones JP, McRae L, Possingham HP, Milner-Gulland EJ - PLoS ONE (2012)

The indicator-policy cycle, a framework for using indicators to inform policy:Evaluation of the problem at hand involves defining broad goals of policy, developing models of the system, selecting indicators that reflect the changes of interest, defining specific targets that can be measured with the indicators, and defining a set of actions or policies to achieve the targets, which are assessed using the models. After evaluation, actions are chosen and implemented, with resultant change on biodiversity and drivers of loss, which may also be affected by other external drivers unrelated to the actions; change is monitored with the indicators and assessed against the targets, leading to re-evaluation. Key sources of uncertainty and potential failure throughout the cycle are numbered and discussed in detail in Table S1: 1) assumptions in the evaluation process; 2) the link between evaluation and selection of actions; 3) the link between selection and implementation of actions; 4) the impact of the action differing from the anticipated impact; 5) the link between biodiversity change and indicator change; 6) the link between indicator change and target assessment; and 7) mismatches in temporal and spatial scales throughout the cycle.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3399804&req=5

pone-0041128-g001: The indicator-policy cycle, a framework for using indicators to inform policy:Evaluation of the problem at hand involves defining broad goals of policy, developing models of the system, selecting indicators that reflect the changes of interest, defining specific targets that can be measured with the indicators, and defining a set of actions or policies to achieve the targets, which are assessed using the models. After evaluation, actions are chosen and implemented, with resultant change on biodiversity and drivers of loss, which may also be affected by other external drivers unrelated to the actions; change is monitored with the indicators and assessed against the targets, leading to re-evaluation. Key sources of uncertainty and potential failure throughout the cycle are numbered and discussed in detail in Table S1: 1) assumptions in the evaluation process; 2) the link between evaluation and selection of actions; 3) the link between selection and implementation of actions; 4) the impact of the action differing from the anticipated impact; 5) the link between biodiversity change and indicator change; 6) the link between indicator change and target assessment; and 7) mismatches in temporal and spatial scales throughout the cycle.
Mentions: To make sensible and robust policy decisions, an explicit understanding of the linkages between action and outcomes is needed. This requires the impacts of policies to be projected forward using models, ideally as part of an adaptive decision-making process that includes defining targets and monitoring the results, which we term an “indicator-policy cycle” (Figure 1). Models can be used by policy-makers to assess the impact of their decisions, and to learn and evaluate both our understanding of the relationship between policy action and environmental change, and the appropriateness of the indicators for measuring change. Indicators are a key link in the cycle, as the means by which policy outcomes are communicated and evaluated. However, there has been very little evaluation of the robustness of indicators in representing underlying biodiversity trends of interest, with Branch et al. [13] and Fulton et al. [14] providing notable exceptions.

Bottom Line: In order to influence global policy effectively, conservation scientists need to be able to provide robust predictions of the impact of alternative policies on biodiversity and measure progress towards goals using reliable indicators.Our results support the need for further research on how to use predictive models and indicators to credibly track trends and inform policy.To be useful and relevant, scientists must make testable predictions about the impact of global policy on biodiversity to ensure that targets such as those set at Nagoya catalyse effective and measurable change.

View Article: PubMed Central - PubMed

Affiliation: Department of Life Sciences, Imperial College London, Berkshire, United Kingdom. emily.nicholson@unimelb.edu.au

ABSTRACT
In order to influence global policy effectively, conservation scientists need to be able to provide robust predictions of the impact of alternative policies on biodiversity and measure progress towards goals using reliable indicators. We present a framework for using biodiversity indicators predictively to inform policy choices at a global level. The approach is illustrated with two case studies in which we project forwards the impacts of feasible policies on trends in biodiversity and in relevant indicators. The policies are based on targets agreed at the Convention on Biological Diversity (CBD) meeting in Nagoya in October 2010. The first case study compares protected area policies for African mammals, assessed using the Red List Index; the second example uses the Living Planet Index to assess the impact of a complete halt, versus a reduction, in bottom trawling. In the protected areas example, we find that the indicator can aid in decision-making because it is able to differentiate between the impacts of the different policies. In the bottom trawling example, the indicator exhibits some counter-intuitive behaviour, due to over-representation of some taxonomic and functional groups in the indicator, and contrasting impacts of the policies on different groups caused by trophic interactions. Our results support the need for further research on how to use predictive models and indicators to credibly track trends and inform policy. To be useful and relevant, scientists must make testable predictions about the impact of global policy on biodiversity to ensure that targets such as those set at Nagoya catalyse effective and measurable change.

Show MeSH