Limits...
Probable transmission of coxsackie B3 virus from human to chimpanzee, Denmark.

Nielsen SC, Mourier T, Baandrup U, Søland TM, Bertelsen MF, Gilbert MT, Nielsen LP - Emerging Infect. Dis. (2012)

Bottom Line: In 2010, a chimpanzee died at Copenhagen Zoo following an outbreak of respiratory disease among chimpanzees in the zoo.Identification of coxsackie B3 virus, a common human pathogen, as the causative agent, and its severe manifestation, raise questions about pathogenicity and transmissibility among humans and other primates.

View Article: PubMed Central - PubMed

Affiliation: University of Copenhagen, Copenhagen, Denmark. s.abelnielsen@gmail.com

ABSTRACT
In 2010, a chimpanzee died at Copenhagen Zoo following an outbreak of respiratory disease among chimpanzees in the zoo. Identification of coxsackie B3 virus, a common human pathogen, as the causative agent, and its severe manifestation, raise questions about pathogenicity and transmissibility among humans and other primates.

Show MeSH

Related in: MedlinePlus

Phylogenetic tree of coxsackie B viruses inferred by using neighbor-joining analysis. The tree was generated by using the Tamura-Nei distance model and 1,000 bootstrap replicates. Scale bar represents estimated phylogenetic divergence. Specific coxsackie B virus serotypes (CB1–6) and corresponding GenBank accession number are shown on the right. Poliovirus was included as an outgroup. Coxsackie virus B clade shown in boldface; the reported coxsackie B virus sequence is listed in red. CB, coxsackie B virus.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3376799&req=5

Figure 2: Phylogenetic tree of coxsackie B viruses inferred by using neighbor-joining analysis. The tree was generated by using the Tamura-Nei distance model and 1,000 bootstrap replicates. Scale bar represents estimated phylogenetic divergence. Specific coxsackie B virus serotypes (CB1–6) and corresponding GenBank accession number are shown on the right. Poliovirus was included as an outgroup. Coxsackie virus B clade shown in boldface; the reported coxsackie B virus sequence is listed in red. CB, coxsackie B virus.

Mentions: After PCR amplification, the amplicons were fragmented, converted into a sequencing library, and sequenced by using the Genome Sequencer FLX System (Roche, Copenhagen, Denmark). A local database containing all virus sequences, except those for HIV, retrieved from the Viral Genomes database in GenBank (downloaded June 7, 2011; www.ncbi.nlm.nih.gov/genomes/GenomesHome.cgi?taxid=10239), was constructed, against which all sequence reads were compared by using BLASTn (http://blast.ncbi.nlm.nih.gov/Blast.cgi). This comparison revealed 89,121 sequence reads with similarity to CB3 virus sequences (expectation value <10−6). Using a complete genome of a CB3 virus (strain PD, GenBank accession no. AF231765) as reference, we mapped all sequence reads with similarity to enteroviruses by using SMALT software (www.sanger.ac.uk/resources/software/smalt). A consensus sequence constituting the reported CB3 virus was constructed from the mapped reads (GenBank accession no. JN979570). To assess the likelihood of the reported CB3 virus being of human origin, we performed phylogenetic analysis by using a neighbor-joining method. The phylogeny was generated by using published full-genome CBV sequences; all CBV serotypes and the chimpanzee CB3 virus were represented (Figure 2). The phylogeny shows a topology in which the new CB3 virus is clustered within a clade containing human CB3 viruses. Thus, it is most likely that the CB3 virus that infected the female chimpanzee was of human origin rather than a novel type.


Probable transmission of coxsackie B3 virus from human to chimpanzee, Denmark.

Nielsen SC, Mourier T, Baandrup U, Søland TM, Bertelsen MF, Gilbert MT, Nielsen LP - Emerging Infect. Dis. (2012)

Phylogenetic tree of coxsackie B viruses inferred by using neighbor-joining analysis. The tree was generated by using the Tamura-Nei distance model and 1,000 bootstrap replicates. Scale bar represents estimated phylogenetic divergence. Specific coxsackie B virus serotypes (CB1–6) and corresponding GenBank accession number are shown on the right. Poliovirus was included as an outgroup. Coxsackie virus B clade shown in boldface; the reported coxsackie B virus sequence is listed in red. CB, coxsackie B virus.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3376799&req=5

Figure 2: Phylogenetic tree of coxsackie B viruses inferred by using neighbor-joining analysis. The tree was generated by using the Tamura-Nei distance model and 1,000 bootstrap replicates. Scale bar represents estimated phylogenetic divergence. Specific coxsackie B virus serotypes (CB1–6) and corresponding GenBank accession number are shown on the right. Poliovirus was included as an outgroup. Coxsackie virus B clade shown in boldface; the reported coxsackie B virus sequence is listed in red. CB, coxsackie B virus.
Mentions: After PCR amplification, the amplicons were fragmented, converted into a sequencing library, and sequenced by using the Genome Sequencer FLX System (Roche, Copenhagen, Denmark). A local database containing all virus sequences, except those for HIV, retrieved from the Viral Genomes database in GenBank (downloaded June 7, 2011; www.ncbi.nlm.nih.gov/genomes/GenomesHome.cgi?taxid=10239), was constructed, against which all sequence reads were compared by using BLASTn (http://blast.ncbi.nlm.nih.gov/Blast.cgi). This comparison revealed 89,121 sequence reads with similarity to CB3 virus sequences (expectation value <10−6). Using a complete genome of a CB3 virus (strain PD, GenBank accession no. AF231765) as reference, we mapped all sequence reads with similarity to enteroviruses by using SMALT software (www.sanger.ac.uk/resources/software/smalt). A consensus sequence constituting the reported CB3 virus was constructed from the mapped reads (GenBank accession no. JN979570). To assess the likelihood of the reported CB3 virus being of human origin, we performed phylogenetic analysis by using a neighbor-joining method. The phylogeny was generated by using published full-genome CBV sequences; all CBV serotypes and the chimpanzee CB3 virus were represented (Figure 2). The phylogeny shows a topology in which the new CB3 virus is clustered within a clade containing human CB3 viruses. Thus, it is most likely that the CB3 virus that infected the female chimpanzee was of human origin rather than a novel type.

Bottom Line: In 2010, a chimpanzee died at Copenhagen Zoo following an outbreak of respiratory disease among chimpanzees in the zoo.Identification of coxsackie B3 virus, a common human pathogen, as the causative agent, and its severe manifestation, raise questions about pathogenicity and transmissibility among humans and other primates.

View Article: PubMed Central - PubMed

Affiliation: University of Copenhagen, Copenhagen, Denmark. s.abelnielsen@gmail.com

ABSTRACT
In 2010, a chimpanzee died at Copenhagen Zoo following an outbreak of respiratory disease among chimpanzees in the zoo. Identification of coxsackie B3 virus, a common human pathogen, as the causative agent, and its severe manifestation, raise questions about pathogenicity and transmissibility among humans and other primates.

Show MeSH
Related in: MedlinePlus