Limits...
Electrochemical oxidation of cysteine at a film gold modified carbon fiber microelectrode its application in a flow-through voltammetric sensor.

Wang LH, Huang WS - Sensors (Basel) (2012)

Bottom Line: The possible reaction mechanism of the oxidation process is described from the relations to scan rate, peak potentials and currents.For the pulse mode, and measurements with suitable experimental parameters, a linear concentration from 0.5 to 5.0 mg·L(-1) was found.The limit of quantification for cysteine was below 60 ng·mL(-1).

View Article: PubMed Central - PubMed

Affiliation: Department of Medical Chemistry, Chia Nan University of Pharmacy and Science, Tainan, Taiwan. e201466.wang@msa.hinet.net

ABSTRACT
A flow-electrolytical cell containing a strand of micro Au modified carbon fiber electrodes (CFE) has been designedand characterized for use in a voltammatric detector for detecting cysteine using high-performance liquid chromatography. Cysteine is more efficiently electrochemical oxidized on a Au /CFE than a bare gold and carbon fiber electrode. The possible reaction mechanism of the oxidation process is described from the relations to scan rate, peak potentials and currents. For the pulse mode, and measurements with suitable experimental parameters, a linear concentration from 0.5 to 5.0 mg·L(-1) was found. The limit of quantification for cysteine was below 60 ng·mL(-1).

Show MeSH
Gold particles distribution in the carbon fiber: (a) a bundle of carbon fiber is composed of 8 single fiber; (b) a bundle of carbon fiber is composed of 16 single fiber; (c) a bundle of carbon fiber is composed of 32 single fiber.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3376634&req=5

f10-sensors-12-03562: Gold particles distribution in the carbon fiber: (a) a bundle of carbon fiber is composed of 8 single fiber; (b) a bundle of carbon fiber is composed of 16 single fiber; (c) a bundle of carbon fiber is composed of 32 single fiber.

Mentions: The Au particle distribution on the surface of carbon fiber can be affected by the number (Figure 10) and length (Figure 11) of the carbon fibers.


Electrochemical oxidation of cysteine at a film gold modified carbon fiber microelectrode its application in a flow-through voltammetric sensor.

Wang LH, Huang WS - Sensors (Basel) (2012)

Gold particles distribution in the carbon fiber: (a) a bundle of carbon fiber is composed of 8 single fiber; (b) a bundle of carbon fiber is composed of 16 single fiber; (c) a bundle of carbon fiber is composed of 32 single fiber.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3376634&req=5

f10-sensors-12-03562: Gold particles distribution in the carbon fiber: (a) a bundle of carbon fiber is composed of 8 single fiber; (b) a bundle of carbon fiber is composed of 16 single fiber; (c) a bundle of carbon fiber is composed of 32 single fiber.
Mentions: The Au particle distribution on the surface of carbon fiber can be affected by the number (Figure 10) and length (Figure 11) of the carbon fibers.

Bottom Line: The possible reaction mechanism of the oxidation process is described from the relations to scan rate, peak potentials and currents.For the pulse mode, and measurements with suitable experimental parameters, a linear concentration from 0.5 to 5.0 mg·L(-1) was found.The limit of quantification for cysteine was below 60 ng·mL(-1).

View Article: PubMed Central - PubMed

Affiliation: Department of Medical Chemistry, Chia Nan University of Pharmacy and Science, Tainan, Taiwan. e201466.wang@msa.hinet.net

ABSTRACT
A flow-electrolytical cell containing a strand of micro Au modified carbon fiber electrodes (CFE) has been designedand characterized for use in a voltammatric detector for detecting cysteine using high-performance liquid chromatography. Cysteine is more efficiently electrochemical oxidized on a Au /CFE than a bare gold and carbon fiber electrode. The possible reaction mechanism of the oxidation process is described from the relations to scan rate, peak potentials and currents. For the pulse mode, and measurements with suitable experimental parameters, a linear concentration from 0.5 to 5.0 mg·L(-1) was found. The limit of quantification for cysteine was below 60 ng·mL(-1).

Show MeSH