Limits...
Ocean bottom seismometer: design and test of a measurement system for marine seismology.

Mànuel A, Roset X, Del Rio J, Toma DM, Carreras N, Panahi SS, Garcia-Benadí A, Owen T, Cadena J - Sensors (Basel) (2012)

Bottom Line: Ocean Bottom Seismometers (OBS) have received growing attention from the geoscience community during the last forty years.In a seismic survey, a series of OBSs are placed on the seabed of the area under study, where they record either natural seismic activity or acoustic signals generated by compressed air-guns on the ocean surface.The resulting data sets are subsequently used to model both the earthquake locations and the crustal structure.

View Article: PubMed Central - PubMed

Affiliation: SARTI Group, Electronics Department, Universitat Politècnica de Catalunya, UPC.Vilanova i la Geltrú 08800, Spain. antoni.manuel@upc.edu

ABSTRACT
The Ocean Bottom Seismometer (OBS) is a key instrument for the geophysical study of sea sub-bottom layers. At present, more reliable autonomous instruments capable of recording underwater for long periods of time and therefore handling large data storage are needed. This paper presents a new Ocean Bottom Seismometer designed to be used in long duration seismic surveys. Power consumption and noise level of the acquisition system are the key points to optimize the autonomy and the data quality. To achieve our goals, a new low power data logger with high resolution and Signal-to-Noise Ratio (SNR) based on Compact Flash memory card is designed to enable continuous data acquisition. The equipment represents the achievement of joint work from different scientific and technological disciplines as electronics, mechanics, acoustics, communications, information technology, marine geophysics, etc. This easy to handle and sophisticated equipment allows the recording of useful controlled source and passive seismic data, as well as other time varying data, with multiple applications in marine environment research. We have been working on a series of prototypes for ten years to improve many of the aspects that make the equipment easy to handle and useful to work in deep-water areas. Ocean Bottom Seismometers (OBS) have received growing attention from the geoscience community during the last forty years. OBS sensors recording motion of the ocean floor hold key information in order to study offshore seismicity and to explore the Earth's crust. In a seismic survey, a series of OBSs are placed on the seabed of the area under study, where they record either natural seismic activity or acoustic signals generated by compressed air-guns on the ocean surface. The resulting data sets are subsequently used to model both the earthquake locations and the crustal structure.

No MeSH data available.


Related in: MedlinePlus

Seismic section from data of a single component, acquired by a single OBS designed by SARTI-UPC in a controlled source seismic experiment. We identify the direct wave, the reflections and refractions of an acoustic wave.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3376630&req=5

f3-sensors-12-03693: Seismic section from data of a single component, acquired by a single OBS designed by SARTI-UPC in a controlled source seismic experiment. We identify the direct wave, the reflections and refractions of an acoustic wave.

Mentions: Because of the importance of seismic data to the oil exploration and extraction industries the processing of industrial seismic data has received a great deal of attention, and much development and innovation has taken place. However, most of the industrial data has been acquired using towed hydrophones, and industry has historically had less experience of processing datasets that include multicomponent geophone data, although recently there has been more interest in such data sets because the industry has begun to use seabed recording of seismic data routinely for time lapse monitoring in the vicinity of oil reservoirs. Figure 3 shows a typical raw dataset for a single component presented as a time-distance plot.


Ocean bottom seismometer: design and test of a measurement system for marine seismology.

Mànuel A, Roset X, Del Rio J, Toma DM, Carreras N, Panahi SS, Garcia-Benadí A, Owen T, Cadena J - Sensors (Basel) (2012)

Seismic section from data of a single component, acquired by a single OBS designed by SARTI-UPC in a controlled source seismic experiment. We identify the direct wave, the reflections and refractions of an acoustic wave.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3376630&req=5

f3-sensors-12-03693: Seismic section from data of a single component, acquired by a single OBS designed by SARTI-UPC in a controlled source seismic experiment. We identify the direct wave, the reflections and refractions of an acoustic wave.
Mentions: Because of the importance of seismic data to the oil exploration and extraction industries the processing of industrial seismic data has received a great deal of attention, and much development and innovation has taken place. However, most of the industrial data has been acquired using towed hydrophones, and industry has historically had less experience of processing datasets that include multicomponent geophone data, although recently there has been more interest in such data sets because the industry has begun to use seabed recording of seismic data routinely for time lapse monitoring in the vicinity of oil reservoirs. Figure 3 shows a typical raw dataset for a single component presented as a time-distance plot.

Bottom Line: Ocean Bottom Seismometers (OBS) have received growing attention from the geoscience community during the last forty years.In a seismic survey, a series of OBSs are placed on the seabed of the area under study, where they record either natural seismic activity or acoustic signals generated by compressed air-guns on the ocean surface.The resulting data sets are subsequently used to model both the earthquake locations and the crustal structure.

View Article: PubMed Central - PubMed

Affiliation: SARTI Group, Electronics Department, Universitat Politècnica de Catalunya, UPC.Vilanova i la Geltrú 08800, Spain. antoni.manuel@upc.edu

ABSTRACT
The Ocean Bottom Seismometer (OBS) is a key instrument for the geophysical study of sea sub-bottom layers. At present, more reliable autonomous instruments capable of recording underwater for long periods of time and therefore handling large data storage are needed. This paper presents a new Ocean Bottom Seismometer designed to be used in long duration seismic surveys. Power consumption and noise level of the acquisition system are the key points to optimize the autonomy and the data quality. To achieve our goals, a new low power data logger with high resolution and Signal-to-Noise Ratio (SNR) based on Compact Flash memory card is designed to enable continuous data acquisition. The equipment represents the achievement of joint work from different scientific and technological disciplines as electronics, mechanics, acoustics, communications, information technology, marine geophysics, etc. This easy to handle and sophisticated equipment allows the recording of useful controlled source and passive seismic data, as well as other time varying data, with multiple applications in marine environment research. We have been working on a series of prototypes for ten years to improve many of the aspects that make the equipment easy to handle and useful to work in deep-water areas. Ocean Bottom Seismometers (OBS) have received growing attention from the geoscience community during the last forty years. OBS sensors recording motion of the ocean floor hold key information in order to study offshore seismicity and to explore the Earth's crust. In a seismic survey, a series of OBSs are placed on the seabed of the area under study, where they record either natural seismic activity or acoustic signals generated by compressed air-guns on the ocean surface. The resulting data sets are subsequently used to model both the earthquake locations and the crustal structure.

No MeSH data available.


Related in: MedlinePlus