Limits...
Cell-based sensor system using L6 cells for broad band continuous pollutant monitoring in aquatic environments.

Kubisch R, Bohrn U, Fleischer M, Stütz E - Sensors (Basel) (2012)

Bottom Line: In this study, the applicability of a cell-based sensor system using selected eukaryotic cell lines for the detection of aquatic pollutants is shown.A variety of potential cytotoxic classes of substances (heavy metals, pharmaceuticals, neurotoxins, waste water) was tested with monolayers of L6 cells (rat myoblasts).In a close to application model a real waste water sample shows detectable signals, indicating the existence of cytotoxic substances.

View Article: PubMed Central - PubMed

Affiliation: Pharmaceutical Biology-Biotechnology, Department of Pharmacy, Center for Drug Research, Ludwig-Maximilian-University Munich, Munich, Germany. rebekka.kubisch@cup.uni-muenchen.de

ABSTRACT
Pollution of drinking water sources represents a continuously emerging problem in global environmental protection. Novel techniques for real-time monitoring of water quality, capable of the detection of unanticipated toxic and bioactive substances, are urgently needed. In this study, the applicability of a cell-based sensor system using selected eukaryotic cell lines for the detection of aquatic pollutants is shown. Readout parameters of the cells were the acidification (metabolism), oxygen consumption (respiration) and impedance (morphology) of the cells. A variety of potential cytotoxic classes of substances (heavy metals, pharmaceuticals, neurotoxins, waste water) was tested with monolayers of L6 cells (rat myoblasts). The cytotoxicity or cellular effects induced by inorganic ions (Ni(2+) and Cu(2+)) can be detected with the metabolic parameters acidification and respiration down to 0.5 mg/L, whereas the detection limit for other substances like nicotine and acetaminophen are rather high, in the range of 0.1 mg/L and 100 mg/L. In a close to application model a real waste water sample shows detectable signals, indicating the existence of cytotoxic substances. The results support the paradigm change from single substance detection to the monitoring of overall toxicity.

Show MeSH

Related in: MedlinePlus

Time course of the impedance (a), acidification (b) and respiration (c) of L6 rat skeletal muscle cells during 24 h incubation with a real waste water sample in the Bionas 2500 Analyzing System. Vehicle control (black), undiluted (red), 1:10 (blue), 1:100 (green), 1:1,000 (yellow) and 1:100,000 (grey). Phases with running medium (RM) represent culture medium treatment without added substances.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3376625&req=5

f8-sensors-12-03370: Time course of the impedance (a), acidification (b) and respiration (c) of L6 rat skeletal muscle cells during 24 h incubation with a real waste water sample in the Bionas 2500 Analyzing System. Vehicle control (black), undiluted (red), 1:10 (blue), 1:100 (green), 1:1,000 (yellow) and 1:100,000 (grey). Phases with running medium (RM) represent culture medium treatment without added substances.

Mentions: Two hours after application of the undiluted water sample (Figure 8(a)), the impedance of confluent grown L6 cells started to decrease constantly whereas the dilution of the water sample between 1:100–1:10,000 only slightly effect the impedance of the cells. Right after introduction of the cells to the undiluted water sample the acidification rate increased with a subsequent decrease after 4 h, resulting in an acidification rate below 30% at the end of the experiment. Acidification rates of the cells incubated with dilutions of the water sample between 1:10–1:10,000 also showed an increase up to 140% but in these dilution ranges, the acidification rates stayed at that level (Figure 8(b)). Pollutants of this particular waste water sample might lead to an activated metabolism when they are supplied in a diluted form. Respiration of the cells was also reduced by the undiluted water sample starting rapidly after sample application. 14 h after the addition of the waste water sample the resulting respiration rate was lower than 20% of the start value, whereas the 1:10- and 1:100-dilution of the water sample showed similar effects as the acidification rates, as they are increased compared to the control measurement (Figure 8(c)).


Cell-based sensor system using L6 cells for broad band continuous pollutant monitoring in aquatic environments.

Kubisch R, Bohrn U, Fleischer M, Stütz E - Sensors (Basel) (2012)

Time course of the impedance (a), acidification (b) and respiration (c) of L6 rat skeletal muscle cells during 24 h incubation with a real waste water sample in the Bionas 2500 Analyzing System. Vehicle control (black), undiluted (red), 1:10 (blue), 1:100 (green), 1:1,000 (yellow) and 1:100,000 (grey). Phases with running medium (RM) represent culture medium treatment without added substances.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3376625&req=5

f8-sensors-12-03370: Time course of the impedance (a), acidification (b) and respiration (c) of L6 rat skeletal muscle cells during 24 h incubation with a real waste water sample in the Bionas 2500 Analyzing System. Vehicle control (black), undiluted (red), 1:10 (blue), 1:100 (green), 1:1,000 (yellow) and 1:100,000 (grey). Phases with running medium (RM) represent culture medium treatment without added substances.
Mentions: Two hours after application of the undiluted water sample (Figure 8(a)), the impedance of confluent grown L6 cells started to decrease constantly whereas the dilution of the water sample between 1:100–1:10,000 only slightly effect the impedance of the cells. Right after introduction of the cells to the undiluted water sample the acidification rate increased with a subsequent decrease after 4 h, resulting in an acidification rate below 30% at the end of the experiment. Acidification rates of the cells incubated with dilutions of the water sample between 1:10–1:10,000 also showed an increase up to 140% but in these dilution ranges, the acidification rates stayed at that level (Figure 8(b)). Pollutants of this particular waste water sample might lead to an activated metabolism when they are supplied in a diluted form. Respiration of the cells was also reduced by the undiluted water sample starting rapidly after sample application. 14 h after the addition of the waste water sample the resulting respiration rate was lower than 20% of the start value, whereas the 1:10- and 1:100-dilution of the water sample showed similar effects as the acidification rates, as they are increased compared to the control measurement (Figure 8(c)).

Bottom Line: In this study, the applicability of a cell-based sensor system using selected eukaryotic cell lines for the detection of aquatic pollutants is shown.A variety of potential cytotoxic classes of substances (heavy metals, pharmaceuticals, neurotoxins, waste water) was tested with monolayers of L6 cells (rat myoblasts).In a close to application model a real waste water sample shows detectable signals, indicating the existence of cytotoxic substances.

View Article: PubMed Central - PubMed

Affiliation: Pharmaceutical Biology-Biotechnology, Department of Pharmacy, Center for Drug Research, Ludwig-Maximilian-University Munich, Munich, Germany. rebekka.kubisch@cup.uni-muenchen.de

ABSTRACT
Pollution of drinking water sources represents a continuously emerging problem in global environmental protection. Novel techniques for real-time monitoring of water quality, capable of the detection of unanticipated toxic and bioactive substances, are urgently needed. In this study, the applicability of a cell-based sensor system using selected eukaryotic cell lines for the detection of aquatic pollutants is shown. Readout parameters of the cells were the acidification (metabolism), oxygen consumption (respiration) and impedance (morphology) of the cells. A variety of potential cytotoxic classes of substances (heavy metals, pharmaceuticals, neurotoxins, waste water) was tested with monolayers of L6 cells (rat myoblasts). The cytotoxicity or cellular effects induced by inorganic ions (Ni(2+) and Cu(2+)) can be detected with the metabolic parameters acidification and respiration down to 0.5 mg/L, whereas the detection limit for other substances like nicotine and acetaminophen are rather high, in the range of 0.1 mg/L and 100 mg/L. In a close to application model a real waste water sample shows detectable signals, indicating the existence of cytotoxic substances. The results support the paradigm change from single substance detection to the monitoring of overall toxicity.

Show MeSH
Related in: MedlinePlus