Limits...
Cell-based sensor system using L6 cells for broad band continuous pollutant monitoring in aquatic environments.

Kubisch R, Bohrn U, Fleischer M, Stütz E - Sensors (Basel) (2012)

Bottom Line: In this study, the applicability of a cell-based sensor system using selected eukaryotic cell lines for the detection of aquatic pollutants is shown.A variety of potential cytotoxic classes of substances (heavy metals, pharmaceuticals, neurotoxins, waste water) was tested with monolayers of L6 cells (rat myoblasts).In a close to application model a real waste water sample shows detectable signals, indicating the existence of cytotoxic substances.

View Article: PubMed Central - PubMed

Affiliation: Pharmaceutical Biology-Biotechnology, Department of Pharmacy, Center for Drug Research, Ludwig-Maximilian-University Munich, Munich, Germany. rebekka.kubisch@cup.uni-muenchen.de

ABSTRACT
Pollution of drinking water sources represents a continuously emerging problem in global environmental protection. Novel techniques for real-time monitoring of water quality, capable of the detection of unanticipated toxic and bioactive substances, are urgently needed. In this study, the applicability of a cell-based sensor system using selected eukaryotic cell lines for the detection of aquatic pollutants is shown. Readout parameters of the cells were the acidification (metabolism), oxygen consumption (respiration) and impedance (morphology) of the cells. A variety of potential cytotoxic classes of substances (heavy metals, pharmaceuticals, neurotoxins, waste water) was tested with monolayers of L6 cells (rat myoblasts). The cytotoxicity or cellular effects induced by inorganic ions (Ni(2+) and Cu(2+)) can be detected with the metabolic parameters acidification and respiration down to 0.5 mg/L, whereas the detection limit for other substances like nicotine and acetaminophen are rather high, in the range of 0.1 mg/L and 100 mg/L. In a close to application model a real waste water sample shows detectable signals, indicating the existence of cytotoxic substances. The results support the paradigm change from single substance detection to the monitoring of overall toxicity.

Show MeSH

Related in: MedlinePlus

Schematic cross section of a SC 1000 Metabolic Chip (Bionas) with the perfusion head of the Bionas analyzing system device. The silicone chip (blue) incorporates three types of electrodes: impedance electrode (IDES), oxygen electrode (CLARK) and pH electrode (ISFET).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3376625&req=5

f2-sensors-12-03370: Schematic cross section of a SC 1000 Metabolic Chip (Bionas) with the perfusion head of the Bionas analyzing system device. The silicone chip (blue) incorporates three types of electrodes: impedance electrode (IDES), oxygen electrode (CLARK) and pH electrode (ISFET).

Mentions: The metabolic chips were placed into the six parallel biomodules of the Bionas Analyzing System device. In a stop/go-modus (3–4 min interval), fresh medium (without contaminants) was pumped over the cells through a perfusion head (see Figure 2) via the fluidic system with a gentle flow rate of 56 μL per minute during the go-phase.


Cell-based sensor system using L6 cells for broad band continuous pollutant monitoring in aquatic environments.

Kubisch R, Bohrn U, Fleischer M, Stütz E - Sensors (Basel) (2012)

Schematic cross section of a SC 1000 Metabolic Chip (Bionas) with the perfusion head of the Bionas analyzing system device. The silicone chip (blue) incorporates three types of electrodes: impedance electrode (IDES), oxygen electrode (CLARK) and pH electrode (ISFET).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3376625&req=5

f2-sensors-12-03370: Schematic cross section of a SC 1000 Metabolic Chip (Bionas) with the perfusion head of the Bionas analyzing system device. The silicone chip (blue) incorporates three types of electrodes: impedance electrode (IDES), oxygen electrode (CLARK) and pH electrode (ISFET).
Mentions: The metabolic chips were placed into the six parallel biomodules of the Bionas Analyzing System device. In a stop/go-modus (3–4 min interval), fresh medium (without contaminants) was pumped over the cells through a perfusion head (see Figure 2) via the fluidic system with a gentle flow rate of 56 μL per minute during the go-phase.

Bottom Line: In this study, the applicability of a cell-based sensor system using selected eukaryotic cell lines for the detection of aquatic pollutants is shown.A variety of potential cytotoxic classes of substances (heavy metals, pharmaceuticals, neurotoxins, waste water) was tested with monolayers of L6 cells (rat myoblasts).In a close to application model a real waste water sample shows detectable signals, indicating the existence of cytotoxic substances.

View Article: PubMed Central - PubMed

Affiliation: Pharmaceutical Biology-Biotechnology, Department of Pharmacy, Center for Drug Research, Ludwig-Maximilian-University Munich, Munich, Germany. rebekka.kubisch@cup.uni-muenchen.de

ABSTRACT
Pollution of drinking water sources represents a continuously emerging problem in global environmental protection. Novel techniques for real-time monitoring of water quality, capable of the detection of unanticipated toxic and bioactive substances, are urgently needed. In this study, the applicability of a cell-based sensor system using selected eukaryotic cell lines for the detection of aquatic pollutants is shown. Readout parameters of the cells were the acidification (metabolism), oxygen consumption (respiration) and impedance (morphology) of the cells. A variety of potential cytotoxic classes of substances (heavy metals, pharmaceuticals, neurotoxins, waste water) was tested with monolayers of L6 cells (rat myoblasts). The cytotoxicity or cellular effects induced by inorganic ions (Ni(2+) and Cu(2+)) can be detected with the metabolic parameters acidification and respiration down to 0.5 mg/L, whereas the detection limit for other substances like nicotine and acetaminophen are rather high, in the range of 0.1 mg/L and 100 mg/L. In a close to application model a real waste water sample shows detectable signals, indicating the existence of cytotoxic substances. The results support the paradigm change from single substance detection to the monitoring of overall toxicity.

Show MeSH
Related in: MedlinePlus