Limits...
A non-destructive distinctive method for discrimination of automobile lubricant variety by visible and short-wave infrared spectroscopy.

Jiang L, Liu F, He Y - Sensors (Basel) (2012)

Bottom Line: In order to improve prediction precision further, BVB was processed by UVE-PLS and the optimal cutoff threshold of UVE was found by SA.An optimal model with a correlation coefficient (R) of 0.9850 and root mean square error of prediction (RMSEP) of 0.0827 was obtained.The overall results indicated that the method of combining WPT, UVE-PLS and SA was a powerful way to select diagnostic information for discrimination among different varieties of lubricating oil, furthermore, a more parsimonious and efficient LS-SVM model could be obtained.

View Article: PubMed Central - PubMed

Affiliation: Zhejiang Technology Institute of Economy, Hangzhou 310018, China. abbyu111@sina.com

ABSTRACT
A novel method which is a combination of wavelet packet transform (WPT), uninformative variable elimination by partial least squares (UVE-PLS) and simulated annealing (SA) to extract best variance information among different varieties of lubricants is presented. A total of 180 samples (60 for each variety) were characterized on the basis of visible and short-wave infrared spectroscopy (VIS-SWNIR), and 90 samples (30 for each variety) were randomly selected for the calibration set, whereas, the remaining 90 samples (30 for each variety) were used for the validation set. The spectral data was split into different frequency bands by WPT, and different frequency bands were obtained. SA was employed to look for the best variance band (BVB) among different varieties of lubricants. In order to improve prediction precision further, BVB was processed by UVE-PLS and the optimal cutoff threshold of UVE was found by SA. Finally, five variables were mined, and were set as inputs for a least square-support vector machine (LS-SVM) to build the recognition model. An optimal model with a correlation coefficient (R) of 0.9850 and root mean square error of prediction (RMSEP) of 0.0827 was obtained. The overall results indicated that the method of combining WPT, UVE-PLS and SA was a powerful way to select diagnostic information for discrimination among different varieties of lubricating oil, furthermore, a more parsimonious and efficient LS-SVM model could be obtained.

No MeSH data available.


Full WPT binary tree.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3376611&req=5

f1-sensors-12-03498: Full WPT binary tree.

Mentions: WPT is a derivative of WT. In the fast wavelet transform (WT) [19], a partial multi-resolution analysis is performed. Only approximation coefficients (low-pass node) are employed to deduce both scale and wavelet coefficients at the next resolution level. However, WPT allows a full multi-resolution analysis; both the approximation and detailed coefficients (high-pass node) are involved to decompose at the next resolution level at the same time [20]. As a result, a library of sub-bands including low frequency and high frequency is obtained. A schematic diagram for the WPT decomposition was shown in Figure 1. In the diagram, each node is identified by the pair of indices U (j,k), where j is the level of decomposition and k is the position of the node at that level of decomposition.


A non-destructive distinctive method for discrimination of automobile lubricant variety by visible and short-wave infrared spectroscopy.

Jiang L, Liu F, He Y - Sensors (Basel) (2012)

Full WPT binary tree.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3376611&req=5

f1-sensors-12-03498: Full WPT binary tree.
Mentions: WPT is a derivative of WT. In the fast wavelet transform (WT) [19], a partial multi-resolution analysis is performed. Only approximation coefficients (low-pass node) are employed to deduce both scale and wavelet coefficients at the next resolution level. However, WPT allows a full multi-resolution analysis; both the approximation and detailed coefficients (high-pass node) are involved to decompose at the next resolution level at the same time [20]. As a result, a library of sub-bands including low frequency and high frequency is obtained. A schematic diagram for the WPT decomposition was shown in Figure 1. In the diagram, each node is identified by the pair of indices U (j,k), where j is the level of decomposition and k is the position of the node at that level of decomposition.

Bottom Line: In order to improve prediction precision further, BVB was processed by UVE-PLS and the optimal cutoff threshold of UVE was found by SA.An optimal model with a correlation coefficient (R) of 0.9850 and root mean square error of prediction (RMSEP) of 0.0827 was obtained.The overall results indicated that the method of combining WPT, UVE-PLS and SA was a powerful way to select diagnostic information for discrimination among different varieties of lubricating oil, furthermore, a more parsimonious and efficient LS-SVM model could be obtained.

View Article: PubMed Central - PubMed

Affiliation: Zhejiang Technology Institute of Economy, Hangzhou 310018, China. abbyu111@sina.com

ABSTRACT
A novel method which is a combination of wavelet packet transform (WPT), uninformative variable elimination by partial least squares (UVE-PLS) and simulated annealing (SA) to extract best variance information among different varieties of lubricants is presented. A total of 180 samples (60 for each variety) were characterized on the basis of visible and short-wave infrared spectroscopy (VIS-SWNIR), and 90 samples (30 for each variety) were randomly selected for the calibration set, whereas, the remaining 90 samples (30 for each variety) were used for the validation set. The spectral data was split into different frequency bands by WPT, and different frequency bands were obtained. SA was employed to look for the best variance band (BVB) among different varieties of lubricants. In order to improve prediction precision further, BVB was processed by UVE-PLS and the optimal cutoff threshold of UVE was found by SA. Finally, five variables were mined, and were set as inputs for a least square-support vector machine (LS-SVM) to build the recognition model. An optimal model with a correlation coefficient (R) of 0.9850 and root mean square error of prediction (RMSEP) of 0.0827 was obtained. The overall results indicated that the method of combining WPT, UVE-PLS and SA was a powerful way to select diagnostic information for discrimination among different varieties of lubricating oil, furthermore, a more parsimonious and efficient LS-SVM model could be obtained.

No MeSH data available.