Limits...
Metamaterials application in sensing.

Chen T, Li S, Sun H - Sensors (Basel) (2012)

Bottom Line: Metamaterials are artificial media structured on a size scale smaller than wavelength of external stimuli, and they can exhibit a strong localization and enhancement of fields, which may provide novel tools to significantly enhance the sensitivity and resolution of sensors, and open new degrees of freedom in sensing design aspect.This paper mainly presents the recent progress concerning metamaterials-based sensing, and detailedly reviews the principle, detecting process and sensitivity of three distinct types of sensors based on metamaterials, as well as their challenges and prospects.Moreover, the design guidelines for each sensor and its performance are compared and summarized.

View Article: PubMed Central - PubMed

Affiliation: Mechanical & Power Engineering College, Harbin University of Science and Technology, Harbin 150080, China. chentao@hrbust.edu.cn

ABSTRACT
Metamaterials are artificial media structured on a size scale smaller than wavelength of external stimuli, and they can exhibit a strong localization and enhancement of fields, which may provide novel tools to significantly enhance the sensitivity and resolution of sensors, and open new degrees of freedom in sensing design aspect. This paper mainly presents the recent progress concerning metamaterials-based sensing, and detailedly reviews the principle, detecting process and sensitivity of three distinct types of sensors based on metamaterials, as well as their challenges and prospects. Moreover, the design guidelines for each sensor and its performance are compared and summarized.

No MeSH data available.


Related in: MedlinePlus

Frequency-dependent amplitude transmission of a double SRR metamaterial without (solid curves) and with (dotted curves) photoresist overlayers of 16 μm thickness [81].
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3376603&req=5

f9-sensors-12-02742: Frequency-dependent amplitude transmission of a double SRR metamaterial without (solid curves) and with (dotted curves) photoresist overlayers of 16 μm thickness [81].

Mentions: To investigate the behavior of dielectric overlayers on metamaterials, the terahertz metamaterial-based thin-film sensors were fabricated by conventional photolithography techniques and consisted of square arrays of double SRRs, made from aluminum with 200 nm thickness on silicon substrates with 0.64 mm thickness [81]. Uniform dielectric overlayers from 100 nm to 16 μm thick were deposited onto fixed SRR arrays in order to shift the resonant frequency of the electric response. The metamaterial-based thin-film sensors were characterized in transmission by terahertz time-domain spectroscopy (THz-TDS) in a broadband, photoconductive switch based on system that consisted of four parabolic mirrors in a 8-F confocal geometry [82]. The measurement results are shown in Figure 9. Three distinct resonances are observed as transmission dips in the uncoated metamaterial. They are the LC resonance at ωLC/2π = 0.460 THz, the electric dipole resonance at ωd/2π = 1.356 THz, and a weaker resonance at ωi/2π = 1.160 THz due to excitation of the smaller, inner SRR. As shown by the dotted curve in Figure 9, the presence of the 16 μm thick overlayer (having a relative permittivity εr = 2.7 ± 0.2 at 1.0 THz) causes the LC, dipole, and inner SRR resonances all to shift to lower frequencies by 36 and 60 and 78 GHz, respectively. In terms of practical sensing, however, this technique has sensing limitations inherent in these metamaterial-based thin-film sensors.


Metamaterials application in sensing.

Chen T, Li S, Sun H - Sensors (Basel) (2012)

Frequency-dependent amplitude transmission of a double SRR metamaterial without (solid curves) and with (dotted curves) photoresist overlayers of 16 μm thickness [81].
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3376603&req=5

f9-sensors-12-02742: Frequency-dependent amplitude transmission of a double SRR metamaterial without (solid curves) and with (dotted curves) photoresist overlayers of 16 μm thickness [81].
Mentions: To investigate the behavior of dielectric overlayers on metamaterials, the terahertz metamaterial-based thin-film sensors were fabricated by conventional photolithography techniques and consisted of square arrays of double SRRs, made from aluminum with 200 nm thickness on silicon substrates with 0.64 mm thickness [81]. Uniform dielectric overlayers from 100 nm to 16 μm thick were deposited onto fixed SRR arrays in order to shift the resonant frequency of the electric response. The metamaterial-based thin-film sensors were characterized in transmission by terahertz time-domain spectroscopy (THz-TDS) in a broadband, photoconductive switch based on system that consisted of four parabolic mirrors in a 8-F confocal geometry [82]. The measurement results are shown in Figure 9. Three distinct resonances are observed as transmission dips in the uncoated metamaterial. They are the LC resonance at ωLC/2π = 0.460 THz, the electric dipole resonance at ωd/2π = 1.356 THz, and a weaker resonance at ωi/2π = 1.160 THz due to excitation of the smaller, inner SRR. As shown by the dotted curve in Figure 9, the presence of the 16 μm thick overlayer (having a relative permittivity εr = 2.7 ± 0.2 at 1.0 THz) causes the LC, dipole, and inner SRR resonances all to shift to lower frequencies by 36 and 60 and 78 GHz, respectively. In terms of practical sensing, however, this technique has sensing limitations inherent in these metamaterial-based thin-film sensors.

Bottom Line: Metamaterials are artificial media structured on a size scale smaller than wavelength of external stimuli, and they can exhibit a strong localization and enhancement of fields, which may provide novel tools to significantly enhance the sensitivity and resolution of sensors, and open new degrees of freedom in sensing design aspect.This paper mainly presents the recent progress concerning metamaterials-based sensing, and detailedly reviews the principle, detecting process and sensitivity of three distinct types of sensors based on metamaterials, as well as their challenges and prospects.Moreover, the design guidelines for each sensor and its performance are compared and summarized.

View Article: PubMed Central - PubMed

Affiliation: Mechanical & Power Engineering College, Harbin University of Science and Technology, Harbin 150080, China. chentao@hrbust.edu.cn

ABSTRACT
Metamaterials are artificial media structured on a size scale smaller than wavelength of external stimuli, and they can exhibit a strong localization and enhancement of fields, which may provide novel tools to significantly enhance the sensitivity and resolution of sensors, and open new degrees of freedom in sensing design aspect. This paper mainly presents the recent progress concerning metamaterials-based sensing, and detailedly reviews the principle, detecting process and sensitivity of three distinct types of sensors based on metamaterials, as well as their challenges and prospects. Moreover, the design guidelines for each sensor and its performance are compared and summarized.

No MeSH data available.


Related in: MedlinePlus