Limits...
Metamaterials application in sensing.

Chen T, Li S, Sun H - Sensors (Basel) (2012)

Bottom Line: Metamaterials are artificial media structured on a size scale smaller than wavelength of external stimuli, and they can exhibit a strong localization and enhancement of fields, which may provide novel tools to significantly enhance the sensitivity and resolution of sensors, and open new degrees of freedom in sensing design aspect.This paper mainly presents the recent progress concerning metamaterials-based sensing, and detailedly reviews the principle, detecting process and sensitivity of three distinct types of sensors based on metamaterials, as well as their challenges and prospects.Moreover, the design guidelines for each sensor and its performance are compared and summarized.

View Article: PubMed Central - PubMed

Affiliation: Mechanical & Power Engineering College, Harbin University of Science and Technology, Harbin 150080, China. chentao@hrbust.edu.cn

ABSTRACT
Metamaterials are artificial media structured on a size scale smaller than wavelength of external stimuli, and they can exhibit a strong localization and enhancement of fields, which may provide novel tools to significantly enhance the sensitivity and resolution of sensors, and open new degrees of freedom in sensing design aspect. This paper mainly presents the recent progress concerning metamaterials-based sensing, and detailedly reviews the principle, detecting process and sensitivity of three distinct types of sensors based on metamaterials, as well as their challenges and prospects. Moreover, the design guidelines for each sensor and its performance are compared and summarized.

No MeSH data available.


(a) Typical scanning electron micrograph of plasmonic nanorod metamaterial and (b) Schematic of the attenuated total internal reflection (ATR) measurements and flow cell [55].
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3376603&req=5

f6-sensors-12-02742: (a) Typical scanning electron micrograph of plasmonic nanorod metamaterial and (b) Schematic of the attenuated total internal reflection (ATR) measurements and flow cell [55].

Mentions: In order to improve the sensitivity, a metamaterial-based plasmonic biosensor by using an array of parallel gold nanorods oriented normally to a glass substrate was proposed [55]. In this structure, the metamaterial consisted of an assembly of Au nanorods electrochemically growing into a substrate-supported, thin-film porous aluminium oxide template. The final structure represented an array of parallel nanorods occupying an area of up to 2 cm2, as shown in Figure 6(a). Moreover, the structural parameters can be controlled by altering the fabrication conditions with typical dimensions being in the range of rod lengths between 20 and 700 nm, rod diameter of 10–50 nm and separation from 40 to 70 nm, thus achieving a nanorod areal density of approximately 1010∼1011 cm−2. The lateral size and separations between the nanorods were much smaller than the wavelength of light used in the experiments, so only average values of nanorod assembly parameters were important, and individual nanorod size deviations had no influence on the optical properties that were well described by an effective medium model. For this reason, the optical properties of the nanorod arrays were very stable with respect to fabrication tolerances [56–58]. The fabrication technology made it possible to fully or partially embed the nanorods into an alumina matrix. In the Figure 6(b), the illumination of the same nanorod structure in the ATR geometry revealed the new guided mode in the near-infrared spectral range.


Metamaterials application in sensing.

Chen T, Li S, Sun H - Sensors (Basel) (2012)

(a) Typical scanning electron micrograph of plasmonic nanorod metamaterial and (b) Schematic of the attenuated total internal reflection (ATR) measurements and flow cell [55].
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3376603&req=5

f6-sensors-12-02742: (a) Typical scanning electron micrograph of plasmonic nanorod metamaterial and (b) Schematic of the attenuated total internal reflection (ATR) measurements and flow cell [55].
Mentions: In order to improve the sensitivity, a metamaterial-based plasmonic biosensor by using an array of parallel gold nanorods oriented normally to a glass substrate was proposed [55]. In this structure, the metamaterial consisted of an assembly of Au nanorods electrochemically growing into a substrate-supported, thin-film porous aluminium oxide template. The final structure represented an array of parallel nanorods occupying an area of up to 2 cm2, as shown in Figure 6(a). Moreover, the structural parameters can be controlled by altering the fabrication conditions with typical dimensions being in the range of rod lengths between 20 and 700 nm, rod diameter of 10–50 nm and separation from 40 to 70 nm, thus achieving a nanorod areal density of approximately 1010∼1011 cm−2. The lateral size and separations between the nanorods were much smaller than the wavelength of light used in the experiments, so only average values of nanorod assembly parameters were important, and individual nanorod size deviations had no influence on the optical properties that were well described by an effective medium model. For this reason, the optical properties of the nanorod arrays were very stable with respect to fabrication tolerances [56–58]. The fabrication technology made it possible to fully or partially embed the nanorods into an alumina matrix. In the Figure 6(b), the illumination of the same nanorod structure in the ATR geometry revealed the new guided mode in the near-infrared spectral range.

Bottom Line: Metamaterials are artificial media structured on a size scale smaller than wavelength of external stimuli, and they can exhibit a strong localization and enhancement of fields, which may provide novel tools to significantly enhance the sensitivity and resolution of sensors, and open new degrees of freedom in sensing design aspect.This paper mainly presents the recent progress concerning metamaterials-based sensing, and detailedly reviews the principle, detecting process and sensitivity of three distinct types of sensors based on metamaterials, as well as their challenges and prospects.Moreover, the design guidelines for each sensor and its performance are compared and summarized.

View Article: PubMed Central - PubMed

Affiliation: Mechanical & Power Engineering College, Harbin University of Science and Technology, Harbin 150080, China. chentao@hrbust.edu.cn

ABSTRACT
Metamaterials are artificial media structured on a size scale smaller than wavelength of external stimuli, and they can exhibit a strong localization and enhancement of fields, which may provide novel tools to significantly enhance the sensitivity and resolution of sensors, and open new degrees of freedom in sensing design aspect. This paper mainly presents the recent progress concerning metamaterials-based sensing, and detailedly reviews the principle, detecting process and sensitivity of three distinct types of sensors based on metamaterials, as well as their challenges and prospects. Moreover, the design guidelines for each sensor and its performance are compared and summarized.

No MeSH data available.