Limits...
Metamaterials application in sensing.

Chen T, Li S, Sun H - Sensors (Basel) (2012)

Bottom Line: Metamaterials are artificial media structured on a size scale smaller than wavelength of external stimuli, and they can exhibit a strong localization and enhancement of fields, which may provide novel tools to significantly enhance the sensitivity and resolution of sensors, and open new degrees of freedom in sensing design aspect.This paper mainly presents the recent progress concerning metamaterials-based sensing, and detailedly reviews the principle, detecting process and sensitivity of three distinct types of sensors based on metamaterials, as well as their challenges and prospects.Moreover, the design guidelines for each sensor and its performance are compared and summarized.

View Article: PubMed Central - PubMed

Affiliation: Mechanical & Power Engineering College, Harbin University of Science and Technology, Harbin 150080, China. chentao@hrbust.edu.cn

ABSTRACT
Metamaterials are artificial media structured on a size scale smaller than wavelength of external stimuli, and they can exhibit a strong localization and enhancement of fields, which may provide novel tools to significantly enhance the sensitivity and resolution of sensors, and open new degrees of freedom in sensing design aspect. This paper mainly presents the recent progress concerning metamaterials-based sensing, and detailedly reviews the principle, detecting process and sensitivity of three distinct types of sensors based on metamaterials, as well as their challenges and prospects. Moreover, the design guidelines for each sensor and its performance are compared and summarized.

No MeSH data available.


(a) Schematic of the micrometer-sized metamaterial resonators sprayed on paper substrates with a predefined microstencil; (b) Photograph of a paper-based terahertz metamaterial sample; (c) Optical microscopy image of one portion of an as-fabricated paper metamaterial sample [49].
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3376603&req=5

f5-sensors-12-02742: (a) Schematic of the micrometer-sized metamaterial resonators sprayed on paper substrates with a predefined microstencil; (b) Photograph of a paper-based terahertz metamaterial sample; (c) Optical microscopy image of one portion of an as-fabricated paper metamaterial sample [49].

Mentions: Recently, Tao et al. [49] proposed a terahertz paper-based metamaterial (MM) device, which can be potentially utilized for quantitative analysis in biochemical sensing applications, as shown in Figure 5. Planar metallic resonators with minimum features of less than 5 μm have been fabricated on paper, using a photoresist-free shadow mask deposition technique. The fabricated paper MM devices show unique electromagnetic (EM) resonant responses at predefined frequencies, which depend on the size of resonator and could be utilized as a signature for biochemical sensing applications. In this sensing structure, the paper acted as the dielectric substrate providing both support and a material to sample and embed analytes, while the patterning metamaterial on paper substrates would offer a platform where the resonance shifts, mainly because of alterations in the SRR capacitance induced by the added analytes, can be utilized for quantitative biochemical sensing applications. Moreover, Proof-of-concept demonstrations were accomplished by monitoring the resonance shift induced by placing different concentrations of glucose solution on the paper MMs.


Metamaterials application in sensing.

Chen T, Li S, Sun H - Sensors (Basel) (2012)

(a) Schematic of the micrometer-sized metamaterial resonators sprayed on paper substrates with a predefined microstencil; (b) Photograph of a paper-based terahertz metamaterial sample; (c) Optical microscopy image of one portion of an as-fabricated paper metamaterial sample [49].
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3376603&req=5

f5-sensors-12-02742: (a) Schematic of the micrometer-sized metamaterial resonators sprayed on paper substrates with a predefined microstencil; (b) Photograph of a paper-based terahertz metamaterial sample; (c) Optical microscopy image of one portion of an as-fabricated paper metamaterial sample [49].
Mentions: Recently, Tao et al. [49] proposed a terahertz paper-based metamaterial (MM) device, which can be potentially utilized for quantitative analysis in biochemical sensing applications, as shown in Figure 5. Planar metallic resonators with minimum features of less than 5 μm have been fabricated on paper, using a photoresist-free shadow mask deposition technique. The fabricated paper MM devices show unique electromagnetic (EM) resonant responses at predefined frequencies, which depend on the size of resonator and could be utilized as a signature for biochemical sensing applications. In this sensing structure, the paper acted as the dielectric substrate providing both support and a material to sample and embed analytes, while the patterning metamaterial on paper substrates would offer a platform where the resonance shifts, mainly because of alterations in the SRR capacitance induced by the added analytes, can be utilized for quantitative biochemical sensing applications. Moreover, Proof-of-concept demonstrations were accomplished by monitoring the resonance shift induced by placing different concentrations of glucose solution on the paper MMs.

Bottom Line: Metamaterials are artificial media structured on a size scale smaller than wavelength of external stimuli, and they can exhibit a strong localization and enhancement of fields, which may provide novel tools to significantly enhance the sensitivity and resolution of sensors, and open new degrees of freedom in sensing design aspect.This paper mainly presents the recent progress concerning metamaterials-based sensing, and detailedly reviews the principle, detecting process and sensitivity of three distinct types of sensors based on metamaterials, as well as their challenges and prospects.Moreover, the design guidelines for each sensor and its performance are compared and summarized.

View Article: PubMed Central - PubMed

Affiliation: Mechanical & Power Engineering College, Harbin University of Science and Technology, Harbin 150080, China. chentao@hrbust.edu.cn

ABSTRACT
Metamaterials are artificial media structured on a size scale smaller than wavelength of external stimuli, and they can exhibit a strong localization and enhancement of fields, which may provide novel tools to significantly enhance the sensitivity and resolution of sensors, and open new degrees of freedom in sensing design aspect. This paper mainly presents the recent progress concerning metamaterials-based sensing, and detailedly reviews the principle, detecting process and sensitivity of three distinct types of sensors based on metamaterials, as well as their challenges and prospects. Moreover, the design guidelines for each sensor and its performance are compared and summarized.

No MeSH data available.