Limits...
Metamaterials application in sensing.

Chen T, Li S, Sun H - Sensors (Basel) (2012)

Bottom Line: Metamaterials are artificial media structured on a size scale smaller than wavelength of external stimuli, and they can exhibit a strong localization and enhancement of fields, which may provide novel tools to significantly enhance the sensitivity and resolution of sensors, and open new degrees of freedom in sensing design aspect.This paper mainly presents the recent progress concerning metamaterials-based sensing, and detailedly reviews the principle, detecting process and sensitivity of three distinct types of sensors based on metamaterials, as well as their challenges and prospects.Moreover, the design guidelines for each sensor and its performance are compared and summarized.

View Article: PubMed Central - PubMed

Affiliation: Mechanical & Power Engineering College, Harbin University of Science and Technology, Harbin 150080, China. chentao@hrbust.edu.cn

ABSTRACT
Metamaterials are artificial media structured on a size scale smaller than wavelength of external stimuli, and they can exhibit a strong localization and enhancement of fields, which may provide novel tools to significantly enhance the sensitivity and resolution of sensors, and open new degrees of freedom in sensing design aspect. This paper mainly presents the recent progress concerning metamaterials-based sensing, and detailedly reviews the principle, detecting process and sensitivity of three distinct types of sensors based on metamaterials, as well as their challenges and prospects. Moreover, the design guidelines for each sensor and its performance are compared and summarized.

No MeSH data available.


Binding bioprocess of biotin and streptavidin: the liquid wall (red circle) shows the receptacle for liquid solution confinement. The sample was immersed in biotin (red) for 12 h, rinsed, and exposed to streptavidin (green) for 6 h.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3376603&req=5

f2-sensors-12-02742: Binding bioprocess of biotin and streptavidin: the liquid wall (red circle) shows the receptacle for liquid solution confinement. The sample was immersed in biotin (red) for 12 h, rinsed, and exposed to streptavidin (green) for 6 h.

Mentions: Generally, a biosensor can be defined as a device incorporating a biological sensing element related to a transducer. It consisted of the sensitive biological element, transducer or the detector element, and associated electronics or signal processors. To study the sensitivity and selectivity characteristics of SRR-based biosensors, the biosensor surface was coated with gold (Au) and the single-stranded deoxyribonucleic acid (ss-DNA)-linked biotin was used for immobilization on the Au surface because of good chemical attraction between ss-DNA and Au. After immobilization, binding of biotin and streptavidin was achieved by a bioprocess because the biotin-streptavidin binding is a well-known affinity, as shown in Figure 2.


Metamaterials application in sensing.

Chen T, Li S, Sun H - Sensors (Basel) (2012)

Binding bioprocess of biotin and streptavidin: the liquid wall (red circle) shows the receptacle for liquid solution confinement. The sample was immersed in biotin (red) for 12 h, rinsed, and exposed to streptavidin (green) for 6 h.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3376603&req=5

f2-sensors-12-02742: Binding bioprocess of biotin and streptavidin: the liquid wall (red circle) shows the receptacle for liquid solution confinement. The sample was immersed in biotin (red) for 12 h, rinsed, and exposed to streptavidin (green) for 6 h.
Mentions: Generally, a biosensor can be defined as a device incorporating a biological sensing element related to a transducer. It consisted of the sensitive biological element, transducer or the detector element, and associated electronics or signal processors. To study the sensitivity and selectivity characteristics of SRR-based biosensors, the biosensor surface was coated with gold (Au) and the single-stranded deoxyribonucleic acid (ss-DNA)-linked biotin was used for immobilization on the Au surface because of good chemical attraction between ss-DNA and Au. After immobilization, binding of biotin and streptavidin was achieved by a bioprocess because the biotin-streptavidin binding is a well-known affinity, as shown in Figure 2.

Bottom Line: Metamaterials are artificial media structured on a size scale smaller than wavelength of external stimuli, and they can exhibit a strong localization and enhancement of fields, which may provide novel tools to significantly enhance the sensitivity and resolution of sensors, and open new degrees of freedom in sensing design aspect.This paper mainly presents the recent progress concerning metamaterials-based sensing, and detailedly reviews the principle, detecting process and sensitivity of three distinct types of sensors based on metamaterials, as well as their challenges and prospects.Moreover, the design guidelines for each sensor and its performance are compared and summarized.

View Article: PubMed Central - PubMed

Affiliation: Mechanical & Power Engineering College, Harbin University of Science and Technology, Harbin 150080, China. chentao@hrbust.edu.cn

ABSTRACT
Metamaterials are artificial media structured on a size scale smaller than wavelength of external stimuli, and they can exhibit a strong localization and enhancement of fields, which may provide novel tools to significantly enhance the sensitivity and resolution of sensors, and open new degrees of freedom in sensing design aspect. This paper mainly presents the recent progress concerning metamaterials-based sensing, and detailedly reviews the principle, detecting process and sensitivity of three distinct types of sensors based on metamaterials, as well as their challenges and prospects. Moreover, the design guidelines for each sensor and its performance are compared and summarized.

No MeSH data available.