Limits...
Metamaterials application in sensing.

Chen T, Li S, Sun H - Sensors (Basel) (2012)

Bottom Line: Metamaterials are artificial media structured on a size scale smaller than wavelength of external stimuli, and they can exhibit a strong localization and enhancement of fields, which may provide novel tools to significantly enhance the sensitivity and resolution of sensors, and open new degrees of freedom in sensing design aspect.This paper mainly presents the recent progress concerning metamaterials-based sensing, and detailedly reviews the principle, detecting process and sensitivity of three distinct types of sensors based on metamaterials, as well as their challenges and prospects.Moreover, the design guidelines for each sensor and its performance are compared and summarized.

View Article: PubMed Central - PubMed

Affiliation: Mechanical & Power Engineering College, Harbin University of Science and Technology, Harbin 150080, China. chentao@hrbust.edu.cn

ABSTRACT
Metamaterials are artificial media structured on a size scale smaller than wavelength of external stimuli, and they can exhibit a strong localization and enhancement of fields, which may provide novel tools to significantly enhance the sensitivity and resolution of sensors, and open new degrees of freedom in sensing design aspect. This paper mainly presents the recent progress concerning metamaterials-based sensing, and detailedly reviews the principle, detecting process and sensitivity of three distinct types of sensors based on metamaterials, as well as their challenges and prospects. Moreover, the design guidelines for each sensor and its performance are compared and summarized.

No MeSH data available.


Related in: MedlinePlus

Fabricated 5 × 5 SRR array-based strain sensor under test in the compression apparatus [92].
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3376603&req=5

f11-sensors-12-02742: Fabricated 5 × 5 SRR array-based strain sensor under test in the compression apparatus [92].

Mentions: Based on the previous studies, Melik et al. proposed the metamaterial-based wireless radio frequency (RF) microelectromechanical systems (MEMS) strain sensors that were highly sensitive to mechanical loading, as shown in Figure 11 [92]. The operating principle of these sensors relied on telemetrically monitoring shifts in their resonance frequencies, which were a function of the strain imparted to the associated circuit in response to externally applied loads. In operation, a cast polyamide stick was employed as the test material. When the apparatus applied compressive loads to the cast polyamide stick from 0 to 300 kgf, the sensor was mechanically deformed under stress, resulting in the operating resonance frequency shift. For example, in compression, the dielectric area and capacitance (dielectric capacitance) were decreased, the space between the metals was increased, and the capacitance between metals was decreased. These changes resulted in an overall increase in the resonance frequency. Therefore, in 5 × 5 SRR architecture, the wireless sensors yield high sensitivity (109 kHz/kgf, or 5.148 kHz/microstrain) with low nonlinear error (<200 microstrain).


Metamaterials application in sensing.

Chen T, Li S, Sun H - Sensors (Basel) (2012)

Fabricated 5 × 5 SRR array-based strain sensor under test in the compression apparatus [92].
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3376603&req=5

f11-sensors-12-02742: Fabricated 5 × 5 SRR array-based strain sensor under test in the compression apparatus [92].
Mentions: Based on the previous studies, Melik et al. proposed the metamaterial-based wireless radio frequency (RF) microelectromechanical systems (MEMS) strain sensors that were highly sensitive to mechanical loading, as shown in Figure 11 [92]. The operating principle of these sensors relied on telemetrically monitoring shifts in their resonance frequencies, which were a function of the strain imparted to the associated circuit in response to externally applied loads. In operation, a cast polyamide stick was employed as the test material. When the apparatus applied compressive loads to the cast polyamide stick from 0 to 300 kgf, the sensor was mechanically deformed under stress, resulting in the operating resonance frequency shift. For example, in compression, the dielectric area and capacitance (dielectric capacitance) were decreased, the space between the metals was increased, and the capacitance between metals was decreased. These changes resulted in an overall increase in the resonance frequency. Therefore, in 5 × 5 SRR architecture, the wireless sensors yield high sensitivity (109 kHz/kgf, or 5.148 kHz/microstrain) with low nonlinear error (<200 microstrain).

Bottom Line: Metamaterials are artificial media structured on a size scale smaller than wavelength of external stimuli, and they can exhibit a strong localization and enhancement of fields, which may provide novel tools to significantly enhance the sensitivity and resolution of sensors, and open new degrees of freedom in sensing design aspect.This paper mainly presents the recent progress concerning metamaterials-based sensing, and detailedly reviews the principle, detecting process and sensitivity of three distinct types of sensors based on metamaterials, as well as their challenges and prospects.Moreover, the design guidelines for each sensor and its performance are compared and summarized.

View Article: PubMed Central - PubMed

Affiliation: Mechanical & Power Engineering College, Harbin University of Science and Technology, Harbin 150080, China. chentao@hrbust.edu.cn

ABSTRACT
Metamaterials are artificial media structured on a size scale smaller than wavelength of external stimuli, and they can exhibit a strong localization and enhancement of fields, which may provide novel tools to significantly enhance the sensitivity and resolution of sensors, and open new degrees of freedom in sensing design aspect. This paper mainly presents the recent progress concerning metamaterials-based sensing, and detailedly reviews the principle, detecting process and sensitivity of three distinct types of sensors based on metamaterials, as well as their challenges and prospects. Moreover, the design guidelines for each sensor and its performance are compared and summarized.

No MeSH data available.


Related in: MedlinePlus